Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel E. Dinger is active.

Publication


Featured researches published by Marcel E. Dinger.


Nature Reviews Genetics | 2009

Long non-coding RNAs: insights into functions

Tim R. Mercer; Marcel E. Dinger; John S. Mattick

In mammals and other eukaryotes most of the genome is transcribed in a developmentally regulated manner to produce large numbers of long non-coding RNAs (ncRNAs). Here we review the rapidly advancing field of long ncRNAs, describing their conservation, their organization in the genome and their roles in gene regulation. We also consider the medical implications, and the emerging recognition that any transcript, regardless of coding potential, can have an intrinsic function as an RNA.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Specific expression of long noncoding RNAs in the mouse brain

Tim R. Mercer; Marcel E. Dinger; Susan M. Sunkin; Mark F. Mehler; John S. Mattick

A major proportion of the mammalian transcriptome comprises long RNAs that have little or no protein-coding capacity (ncRNAs). Only a handful of such transcripts have been examined in detail, and it is unknown whether this class of transcript is generally functional or merely artifact. Using in situ hybridization data from the Allen Brain Atlas, we identified 849 ncRNAs (of 1,328 examined) that are expressed in the adult mouse brain and found that the majority were associated with specific neuroanatomical regions, cell types, or subcellular compartments. Examination of their genomic context revealed that the ncRNAs were expressed from diverse places including intergenic, intronic, and imprinted loci and that many overlap with, or are transcribed antisense to, protein-coding genes of neurological importance. Comparisons between the expression profiles of ncRNAs and their associated protein-coding genes revealed complex relationships that, in combination with the specific expression profiles exhibited at both regional and subcellular levels, are inconsistent with the notion that they are transcriptional noise or artifacts of chromatin remodeling. Our results show that the majority of ncRNAs are expressed in the brain and provide strong evidence that the majority of processed transcripts with no protein-coding capacity function intrinsically as RNAs.


The Journal of Pathology | 2010

Non-coding RNAs: regulators of disease.

Ryan J. Taft; Ken C Pang; Timothy R. Mercer; Marcel E. Dinger; John S. Mattick

For 50 years the term ‘gene’ has been synonymous with regions of the genome encoding mRNAs that are translated into protein. However, recent genome‐wide studies have shown that the human genome is pervasively transcribed and produces many thousands of regulatory non‐protein‐coding RNAs (ncRNAs), including microRNAs, small interfering RNAs, PIWI‐interacting RNAs and various classes of long ncRNAs. It is now clear that these RNAs fulfil critical roles as transcriptional and post‐transcriptional regulators and as guides of chromatin‐modifying complexes. Here we review the biology of ncRNAs, focusing on the fundamental mechanisms by which ncRNAs facilitate normal development and physiology and, when dysfunctional, underpin disease. We also discuss evidence that intergenic regions associated with complex diseases express ncRNAs, as well as the potential use of ncRNAs as diagnostic markers and therapeutic targets. Taken together, these observations emphasize the need to move beyond the confines of protein‐coding genes and highlight the fact that continued investigation of ncRNA biogenesis and function will be necessary for a comprehensive understanding of human disease. Copyright


Genome Research | 2008

Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation

Marcel E. Dinger; Paulo P. Amaral; Tim R. Mercer; Ken C. Pang; Stephen J. Bruce; Brooke Gardiner; Marjan E. Askarian-Amiri; Kelin Ru; Giulia Soldà; Cas Simons; Susan M. Sunkin; Mark L Crowe; Sean M. Grimmond; Andrew C. Perkins; John S. Mattick

The transcriptional networks that regulate embryonic stem (ES) cell pluripotency and lineage specification are the subject of considerable attention. To date such studies have focused almost exclusively on protein-coding transcripts. However, recent transcriptome analyses show that the mammalian genome contains thousands of long noncoding RNAs (ncRNAs), many of which appear to be expressed in a developmentally regulated manner. The functions of these remain untested. To identify ncRNAs involved in ES cell biology, we used a custom-designed microarray to examine the expression profiles of mouse ES cells differentiating as embryoid bodies (EBs) over a 16-d time course. We identified 945 ncRNAs expressed during EB differentiation, of which 174 were differentially expressed, many correlating with pluripotency or specific differentiation events. Candidate ncRNAs were identified for further characterization by an integrated examination of expression profiles, genomic context, chromatin state, and promoter analysis. Many ncRNAs showed coordinated expression with genomically associated developmental genes, such as Dlx1, Dlx4, Gata6, and Ecsit. We examined two novel developmentally regulated ncRNAs, Evx1as and Hoxb5/6as, which are derived from homeotic loci and share similar expression patterns and localization in mouse embryos with their associated protein-coding genes. Using chromatin immunoprecipitation, we provide evidence that both ncRNAs are associated with trimethylated H3K4 histones and histone methyltransferase MLL1, suggesting a role in epigenetic regulation of homeotic loci during ES cell differentiation. Taken together, our data indicate that long ncRNAs are likely to be important in processes directing pluripotency and alternative differentiation programs, in some cases through engagement of the epigenetic machinery.


Science | 2008

The Eukaryotic Genome as an RNA Machine

Paulo P. Amaral; Marcel E. Dinger; Tim R. Mercer; John S. Mattick

The past few years have revealed that the genomes of all studied eukaryotes are almost entirely transcribed, generating an enormous number of non–protein-coding RNAs (ncRNAs). In parallel, it is increasingly evident that many of these RNAs have regulatory functions. Here, we highlight recent advances that illustrate the diversity of ncRNA control of genome dynamics, cell biology, and developmental programming.


Nucleic Acids Research | 2011

lncRNAdb: a reference database for long noncoding RNAs

Paulo P. Amaral; Michael B. Clark; Dennis K. Gascoigne; Marcel E. Dinger; John S. Mattick

Large numbers of long RNAs with little or no protein-coding potential [long noncoding RNAs (lncRNAs)] are being identified in eukaryotes. In parallel, increasing data describing the expression profiles, molecular features and functions of individual lncRNAs in a variety of systems are accumulating. To enable the systematic compilation and updating of this information, we have developed a database (lncRNAdb) containing a comprehensive list of lncRNAs that have been shown to have, or to be associated with, biological functions in eukaryotes, as well as messenger RNAs that have regulatory roles. Each entry contains referenced information about the RNA, including sequences, structural information, genomic context, expression, subcellular localization, conservation, functional evidence and other relevant information. lncRNAdb can be searched by querying published RNA names and aliases, sequences, species and associated protein-coding genes, as well as terms contained in the annotations, such as the tissues in which the transcripts are expressed and associated diseases. In addition, lncRNAdb is linked to the UCSC Genome Browser for visualization and Noncoding RNA Expression Database (NRED) for expression information from a variety of sources. lncRNAdb provides a platform for the ongoing collation of the literature pertaining to lncRNAs and their association with other genomic elements. lncRNAdb can be accessed at: http://www.lncrnadb.org/.


Cell | 2011

The Human Mitochondrial Transcriptome

Tim R. Mercer; Shane Neph; Marcel E. Dinger; Joanna Crawford; Martin A. Smith; Anne Marie J Shearwood; Eric Haugen; Cameron P. Bracken; Oliver Rackham; John A. Stamatoyannopoulos; Aleksandra Filipovska; John S. Mattick

The human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demonstrate wide variation in mitochondrial transcript abundance and precisely resolve transcript processing and maturation events. We identify previously undescribed transcripts, including small RNAs, and observe the enrichment of several nuclear RNAs in mitochondria. Using high-throughput in vivo DNaseI footprinting, we establish the global profile of DNA-binding protein occupancy across the mitochondrial genome at single-nucleotide resolution, revealing regulatory features at mitochondrial transcription initiation sites and functional insights into disease-associated variants. This integrated analysis of the mitochondrial transcriptome reveals unexpected complexity in the regulation, expression, and processing of mitochondrial RNA and provides a resource for future studies of mitochondrial function (accessed at http://mitochondria.matticklab.com).


British Journal of Cancer | 2013

Long noncoding RNAs and the genetics of cancer

Seth W. Cheetham; Franziska Gruhl; John S. Mattick; Marcel E. Dinger

Cancer is a disease of aberrant gene expression. While the genetic causes of cancer have been intensively studied, it is becoming evident that a large proportion of cancer susceptibility cannot be attributed to variation in protein-coding sequences. This is highlighted by genome-wide association studies in cancer that reveal that more than 80% of cancer-associated SNPs occur in noncoding regions of the genome. In this review, we posit that a significant fraction of the genetic aetiology of cancer is exacted by noncoding regulatory sequences, particularly by long noncoding RNAs (lncRNAs). Recent studies indicate that several cancer risk loci are transcribed into lncRNAs and these transcripts play key roles in tumorigenesis. We discuss the epigenetic and other mechanisms through which lncRNAs function and how they contribute to each stage of cancer progression, understanding of which will be crucial for realising new opportunities in cancer diagnosis and treatment. Long noncoding RNAs play important roles in almost every aspect of cell biology from nuclear organisation and epigenetic regulation to post-transcriptional regulation and splicing, and we link these processes to the hallmarks and genetics of cancer. Finally, we highlight recent progress and future potential in the application of lncRNAs as therapeutic targets and diagnostic markers.


Nature Biotechnology | 2012

Targeted RNA sequencing reveals the deep complexity of the human transcriptome

Tim R. Mercer; Daniel J. Gerhardt; Marcel E. Dinger; Joanna Crawford; Cole Trapnell; Jeffrey A. Jeddeloh; John S. Mattick; John L. Rinn

Transcriptomic analyses have revealed an unexpected complexity to the human transcriptome, whose breadth and depth exceeds current RNA sequencing capability. Using tiling arrays to target and sequence select portions of the transcriptome, we identify and characterize unannotated transcripts whose rare or transient expression is below the detection limits of conventional sequencing approaches. We use the unprecedented depth of coverage afforded by this technique to reach the deepest limits of the human transcriptome, exposing widespread, regulated and remarkably complex noncoding transcription in intergenic regions, as well as unannotated exons and splicing patterns in even intensively studied protein-coding loci such as p53 and HOX. The data also show that intermittent sequenced reads observed in conventional RNA sequencing data sets, previously dismissed as noise, are in fact indicative of unassembled rare transcripts. Collectively, these results reveal the range, depth and complexity of a human transcriptome that is far from fully characterized.


PLOS Computational Biology | 2008

Differentiating protein-coding and noncoding RNA: challenges and ambiguities.

Marcel E. Dinger; Ken C. Pang; Tim R. Mercer; John S. Mattick

The assumption that RNA can be readily classified into either protein-coding or non-protein–coding categories has pervaded biology for close to 50 years. Until recently, discrimination between these two categories was relatively straightforward: most transcripts were clearly identifiable as protein-coding messenger RNAs (mRNAs), and readily distinguished from the small number of well-characterized non-protein–coding RNAs (ncRNAs), such as transfer, ribosomal, and spliceosomal RNAs. Recent genome-wide studies have revealed the existence of thousands of noncoding transcripts, whose function and significance are unclear. The discovery of this hidden transcriptome and the implicit challenge it presents to our understanding of the expression and regulation of genetic information has made the need to distinguish between mRNAs and ncRNAs both more pressing and more complicated. In this Review, we consider the diverse strategies employed to discriminate between protein-coding and noncoding transcripts and the fundamental difficulties that are inherent in what may superficially appear to be a simple problem. Misannotations can also run in both directions: some ncRNAs may actually encode peptides, and some of those currently thought to do so may not. Moreover, recent studies have shown that some RNAs can function both as mRNAs and intrinsically as functional ncRNAs, which may be a relatively widespread phenomenon. We conclude that it is difficult to annotate an RNA unequivocally as protein-coding or noncoding, with overlapping protein-coding and noncoding transcripts further confounding this distinction. In addition, the finding that some transcripts can function both intrinsically at the RNA level and to encode proteins suggests a false dichotomy between mRNAs and ncRNAs. Therefore, the functionality of any transcript at the RNA level should not be discounted.

Collaboration


Dive into the Marcel E. Dinger's collaboration.

Top Co-Authors

Avatar

John S. Mattick

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Tim R. Mercer

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mark J. Cowley

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Clark

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Brian S. Gloss

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesper L. V. Maag

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Tony Roscioli

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dominik C. Kaczorowski

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge