Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel Halbach is active.

Publication


Featured researches published by Marcel Halbach.


Cellular Physiology and Biochemistry | 2003

Estimation of Action Potential Changes from Field Potential Recordings in Multicellular Mouse Cardiac Myocyte Cultures

Marcel Halbach; Ulrich Egert; Jürgen Hescheler; Kathrin Banach

Background: Extracellular recordings of electrical activity with substrate-integrated microelectrode arrays (MEAs) enable non-invasive long-term monitoring of contracting multicellular cardiac preparations. However, to characterize not only the spread of excitation and the conduction velocity from field potential (FP) recordings, a more rigorous analysis of FPs is necessary. Therefore in this study we aim to characterize intrinsic action potential (AP) parameters by simultaneous recording of APs and FPs. Methods: A MEA consisting of 60 substrate-integrated electrodes is used to record the FP-waveform from multicellular preparations of isolated embryonic mouse cardiomyocytes. Simultaneous current clamp recordings in the vicinity of individual microelectrodes and pharmacological interventions allowed us to correlate FP and AP components and their time course. Results: The experiments revealed a linear relationship between AP rise time and FP rise time as well as a linear relationship between AP duration and FP duration. Furthermore a direct contribution of the voltage dependent Na+- and Ca2+-current to the FP could be identified. Conclusion: The characterization of the FP allows us for the first time to estimate AP changes and the contribution of individual current components to the AP by the help of non-invasive recording within a multicellular cardiac preparation during long-term culture.


Cellular Physiology and Biochemistry | 2009

Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility.

Kurt Pfannkuche; Huamin Liang; Tobias Hannes; Jiaoya Xi; Azra Fatima; Filomain Nguemo; Matthias Matzkies; Marius Wernig; Rudolf Jaenisch; Frank Pillekamp; Marcel Halbach; Heribert Schunkert; Tomo Saric; Juergen Hescheler; Michael Reppel

Aims: Induced pluripotent stem (iPS) cells have a developmental potential similar to that of blastocyst-derived embryonic stem (ES) cells and may serve as an autologous source of cells for tissue repair, in vitro disease modelling and toxicity assays. Here we aimed at generating iPS cell-derived cardiomyocytes (CMs) and comparing their molecular and functional characteristics with CMs derived from native murine ES cells. Methods and Results: Beating cardiomyocytes were generated using a mass culture system from murine N10 and O9 iPS cells as well as R1 and D3 ES cells. Transcripts of the mesoderm specification factor T-brachyury and non-atrial cardiac specific genes were expressed in differentiating iPS EBs. Using immunocytochemistry to determine the expression and intracellular organisation of cardiac specific structural proteins we demonstrate strong similarity between iPS-CMs and ES-CMs. In line with a previous study electrophysiological analyses showed that hormonal response to β-adrenergic and muscarinic receptor stimulation was intact. Action potential (AP) recordings suggested that most iPS-CMs measured up to day 23 of differentiation are of ventricular-like type. Application of lidocaine, Cs+, SEA0400 and verapamil+ nifedipine to plated iPS-EBs during multi-electrode array (MEA) measurements of extracellular field potentials and intracellular sharp electrode recordings of APs revealed the presence of INa, If, INCX, and ICaL, respectively, and suggested their involvement in cardiac pacemaking, with ICaL being of major importance. Furthermore, iPS-CMs developed and conferred force to avitalized ventricular tissue that was responsive to β-adrenergic stimulation. Conclusions: Our data demonstrate that the cardiogenic potential of iPS cells is comparable to that of ES cells and that iPS-CMs possess all fundamental functional elements of a typical cardiac cell, including spontaneous beating, hormonal regulation, cardiac ion channel expression and contractility. Therefore, iPS-CMs can be regarded as a potentially valuable source of cells for in vitro studies and cellular cardiomyoplasty.


Circulation Research | 2007

Electrophysiological Maturation and Integration of Murine Fetal Cardiomyocytes After Transplantation

Marcel Halbach; Kurt Pfannkuche; Frank Pillekamp; Agnieszka Ziomka; Tobias Hannes; Michael Reppel; Juergen Hescheler; Jochen Müller-Ehmsen

In the present study, we investigated the electrophysiological maturation and integration of immature cardiomyocytes after transplantation; maturation and integration are essential to achieve the cardiac regeneration. Murine fetal cardiomyocytes (FCMs) (d12.5-d15.5) expressing enhanced green fluorescent protein under the control of the &agr;-actin promoter were injected into cryoinjured areas and adjacent myocardium of cryoinjured mouse ventricles. Viable short axis tissue slices (thickness, 150 &mgr;m) of the ventricles were prepared 5 to 6 days after transplantation. Glass microelectrodes were used for measurements of action potentials in transplanted FCMs and host cardiomyocytes within the slices. Stimulation at frequencies of up to 10 Hz was performed via a unipolar electrode placed in viable host tissue. Transplanted FCMs could be distinguished clearly from host tissue by their green fluorescence and their electrophysiological properties: maximal upstroke velocity (Vmax) was significantly lower and action potential duration at 50% repolarization (APD50) was significantly longer compared with values of adult cardiomyocytes. Transplanted FCMs surrounded by cryoinjured tissue showed spontaneous electrical and contractile activity, which was in no case synchronous with host tissue. Vmax and APD50 of these nonintegrated cells matched values of cultivated dissociated FCMs. In contrast, 82% of transplanted FCMs surrounded by viable host tissue were electrically integrated; ie, electrical and contractile activity was synchronous with host tissue and these cells had more mature action potential parameters (significantly higher Vmax and shorter APD50) compared with nonintegrated FCMs. In conclusion, electrophysiological maturation and integration of transplanted FCMs depend on an embedment in viable host myocardium. FCMs surrounded by cryoinjured tissue maintain physiological but immature AP properties.


Genome Biology | 2007

Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes

Michael Xavier Doss; Johannes Winkler; Shuhua Chen; Rita Hippler-Altenburg; Isaia Sotiriadou; Marcel Halbach; Kurt Pfannkuche; Huamin Liang; Herbert Schulz; Oliver Hummel; Norbert Hubner; Ruth Rottscheidt; Jürgen Hescheler; Agapios Sachinidis

BackgroundCharacterization of gene expression signatures for cardiomyocytes derived from embryonic stem cells will help to define their early biologic processes.ResultsA transgenic α-myosin heavy chain (MHC) embryonic stem cell lineage was generated, exhibiting puromycin resistance and expressing enhanced green fluorescent protein (EGFP) under the control of the α-MHC promoter. A puromycin-resistant, EGFP-positive, α-MHC-positive cardiomyocyte population was isolated with over 92% purity. RNA was isolated after electrophysiological characterization of the cardiomyocytes. Comprehensive transcriptome analysis of α-MHC-positive cardiomyocytes in comparison with undifferentiated α-MHC embryonic stem cells and the control population from 15-day-old embryoid bodies led to identification of 884 upregulated probe sets and 951 downregulated probe sets in α-MHC-positive cardiomyocytes. A subset of upregulated genes encodes cytoskeletal and voltage-dependent channel proteins, and proteins that participate in aerobic energy metabolism. Interestingly, mitosis, apoptosis, and Wnt signaling-associated genes were downregulated in the cardiomyocytes. In contrast, annotations for genes upregulated in the α-MHC-positive cardiomyocytes are enriched for the following Gene Ontology (GO) categories: enzyme-linked receptor protein signaling pathway (GO:0007167), protein kinase activity (GO:0004672), negative regulation of Wnt receptor signaling pathway (GO:0030178), and regulation of cell size (O:0008361). They were also enriched for the Biocarta p38 mitogen-activated protein kinase signaling pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) calcium signaling pathway.ConclusionThe specific pattern of gene expression in the cardiomyocytes derived from embryonic stem cells reflects the biologic, physiologic, and functional processes that take place in mature cardiomyocytes. Identification of cardiomyocyte-specific gene expression patterns and signaling pathways will contribute toward elucidating their roles in intact cardiac function.


Cellular Physiology and Biochemistry | 2006

Ventricular Slices of Adult Mouse Hearts - a new Multicellular In Vitro Model for Electrophysiological Studies

Marcel Halbach; Frank Pillekamp; Konrad Brockmeier; Jürgen Hescheler; Jochen Müller-Ehmsen; Michael Reppel

Aim: We established a preparation of adult murine ventricular slices suitable for electrophysiological recordings as a new in vitro model of adult myocardium with preserved in vivo tissue structure. Methods: Short axis slices (thickness: 150 µm) of adult murine ventricles were prepared with a microtome. Sharp glass electrodes were used for measurements of action potentials (APs) at stimulation frequencies of 2 Hz and 10 Hz. Field potential (FP) recordings by means of microelectrode arrays (MEAs) were performed to map excitation spread. Results: APs showed the characteristics of adult murine ventricular APs: (i) a stable resting membrane potential, (ii) a fast upstroke and (iii) a fast phase 1 repolarization. Application of the Na+ channel blocker lidocaine (30 µM) led to a decline of upstroke slope, amplitude and conduction speed. The unspecific K+ channel blocker 4-aminopyridine (5 mM) caused a prolongation of APD50. The excitation spread was homogenous throughout the ventricular wall. Conclusion: Adult murine ventricular slices are electrophysiologically intact and respond physiologically to cardioactive drugs. Thus, they provide a new multicellular in vitro model of adult cardiac tissue suitable for electrophysiological investigations, which in future could be used to study the functional integration of stem cells transplanted in infarcted hearts in vivo.


European Heart Journal | 2008

Role of balloon occlusion for mononuclear bone marrow cell deposition after intracoronary injection in pigs with reperfused myocardial infarction

Paschalis Tossios; Benjamin Krausgrill; Matthias Schmidt; Thomas Fischer; Marcel Halbach; Jochen W.U. Fries; Silke Fahnenstich; Peter Frommolt; Ivonne Heppelmann; Annette Schmidt; Klaus Schomäcker; Jürgen H. Fischer; Wilhelm Bloch; U Mehlhorn; Robert H. G. Schwinger; Jochen Müller-Ehmsen

AIMS In clinical studies on cell therapy for acute myocardial infarction (MI), cells are usually applied by intracoronary infusion with balloon (IC/B). To test the utility of balloon occlusion, mononuclear bone marrow cell (MNC) retention after intracoronary infusion without balloon (IC/noB) was compared with IC/B and intramyocardial (IM) injection. METHODS AND RESULTS Four hours after LAD ligation in male pigs, reperfusion was allowed (confirmed by coronary angiography). Five days later, 1 x 10(8) autologous (111)Indium-labelled MNC were injected IC/noB (n = 4), IC/B (n = 4), or IM (n = 4). At 1 h the fraction of injected MNC that was detected in the heart was 4.1 +/- 1.1% after IC/noB injection, 6.1 +/- 2.5% after IC/B injection (P = 0.19), and 20.7 +/- 2.3% after IM injection (P < 0.001 vs. IC/noB and IC/B). At 24 h it was 3.0 +/- 0.6% (IC/noB), 3.3 +/- 0.5% (IC/B, P = 0.43), and 15.0 +/- 3.1% (IM, P < 0.001 vs. IC/noB and IC/B). Dynamic scintigrammes during each of four consecutive IC/B injections showed a rapid 19.6 +/- 8.0% cell loss during balloon inflation (no-flow period, phase 1) and a rapid 36.6 +/- 17.8% cell loss after balloon deflation (re-flow period, phase 2). After each of four consecutive IC/noB injections the peak cell deposit was lower, followed by one phase of rapid cell loss (30.9 +/- 11.0% after 6 min). After IM injection only a slow linear cell loss was observed (9.7% per h). In histology, PKH-67 labelled cells only rarely had passed the endothelial barrier after 24 h after IC injection, while they were exclusively found in the interstitium after IM injection. CONCLUSION The observation of a similar cell persistence after IC injections with and without balloon occlusion suggests that the balloon procedures currently applied in clinical studies are not necessary for cell deposit. If longer term persistence of cells plays a role for the clinical benefit of cardiac cell therapy, IM injection may be superior to IC applications.


European Journal of Heart Failure | 2015

Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy

Michael R. Zile; William T. Abraham; Fred A. Weaver; Christian Butter; Anique Ducharme; Marcel Halbach; Didier Klug; Eric G. Lovett; Jochen Müller-Ehmsen; Jill E. Schafer; Michele Senni; Vijay Swarup; Rolf Wachter; William C. Little

Increased sympathetic and decreased parasympathetic activity contribute to heart failure (HF) symptoms and disease progression. Carotid baroreceptor stimulation (baroreflex activation therapy, BAT) results in centrally mediated reduction of sympathetic and increase in parasympathetic activity. Because patients treated with cardiac resynchronization therapy (CRT) may have less sympathetic/parasympathetic imbalance, we hypothesized that there would be differences in the response to BAT in patients with CRT vs. those without CRT.


Cardiovascular Research | 2013

Electrophysiological integration and action potential properties of transplanted cardiomyocytes derived from induced pluripotent stem cells

Marcel Halbach; Gabriel Peinkofer; Sven Baumgartner; Martina Maass; Mirjam Wiedey; Klaus Neef; Benjamin Krausgrill; Dennis Ladage; Azra Fatima; Tomo Saric; Jürgen Hescheler; Jochen Müller-Ehmsen

AIMS Induced pluripotent stem cell-derived cardiomyocytes (iPSCM) are regarded as promising cell type for cardiac cell replacement therapy. We investigated long-term electrophysiological integration and maturation of transplanted iPSCM, which are essential for therapeutic benefit. METHODS AND RESULTS Murine iPSCM expressing enhanced green fluorescent protein and a puromycin resistance under control of the α-myosin heavy chain promoter were purified by antibiotic selection and injected into adult mouse hearts. After 6-12 days, 3-6 weeks, or 6-8 months, viable slices of recipient hearts were prepared. Slices were focally stimulated by a unipolar electrode placed in host tissue, and intracellular action potentials (APs) were recorded with glass microelectrodes in transplanted cells and neighbouring host tissue within the slices. Persistence and electrical integration of transplanted iPSCM into recipient hearts could be demonstrated at all time points. Quality of coupling improved, as indicated by a maximal stimulation frequency without conduction blocks of 5.77 ± 0.54 Hz at 6-12 days, 8.98 ± 0.38 Hz at 3-6 weeks and 10.82 ± 1.07 Hz at 6-8 months after transplantation. AP properties of iPSCM became more mature from 6-12 days to 6-8 months after transplantation, but still differed significantly from those of host APs. CONCLUSION Transplanted iPSCM can persist in the long term and integrate electrically into host tissue, supporting their potential for cell replacement therapy. Quality of electrical integration improves between 6-12 days and 6-8 months after transplantation, and there are signs of an electrophysiological maturation. However, even after 6-8 months, AP properties of transplanted iPSCM differ from those of recipient cardiomyocytes.


Cell Transplantation | 2009

Influence of Cell Treatment with PDGF-BB and Reperfusion on Cardiac Persistence of Mononuclear and Mesenchymal Bone Marrow Cells after Transplantation into Acute Myocardial Infarction in Rats

Benjamin Krausgrill; Vantler M; Burst; Raths M; Marcel Halbach; Frank K; Schynkowski S; Schenk K; Jürgen Hescheler; Rosenkranz S; Jochen Müller-Ehmsen

Bone marrow cells are used for cell therapy after myocardial infarction (MI) with promising results. However, cardiac persistence of transplanted cells is rather low. Here, we investigated strategies to increase the survival and cardiac persistence of mononuclear (MNC) and mesenchymal (MSC) bone marrow cells transplanted into infarcted rat hearts. MNC and MSC (male Fischer 344 rats) were treated with different doses of PDGF-BB prior to intramyocardial injection into border zone of MI (syngeneic females, permanent LAD ligation) and hearts were harvested after 5 days and 3 weeks. In additional experiments, untreated MNC and MSC were injected immediately after permanent or temporary LAD ligation and hearts were harvested after 48 h, 5 days, 3 weeks, and 6 weeks. DNA of the hearts was isolated and the number of donor cells was determined by quantitative real-time PCR with Y chromosome-specific primers. There was a remarkable though not statistically significant (p = 0.08) cell loss of ~46% between 5 days and 3 weeks in the control group, which was completely inhibited by treatment with high dose of PDGF-BB. Forty-eight hours after reperfusion only 10% of injected MSC or 1% for MNC were found in the heart, decreasing to 1% for MSC and 0.5% for MNC after 6 weeks. These numbers were lower than after permanent LAD ligation for both MNC and MSC at all time points studied. Treatment with PDGF-BB seems to prevent loss of transplanted bone marrow cells at later times presumably by inhibition of apoptosis, while reperfusion of the occluded artery enhances cell loss at early times putatively due to enhanced early wash-out. Further investigations are needed to substantially improve the persistence and survival of grafted bone marrow cells in infarcted rat hearts, in order to fully explore the therapeutic potential of this novel treatment modality for myocardial repair.


Cellular Physiology and Biochemistry | 2008

Entrapment of Embryonic Stem Cells-Derived Cardiomyocytes in Macroporous Biodegradable Microspheres: Preparation and Characterization

Abdulrhman A. Akasha; Isaia Sotiriadou; Michael Xavier Doss; Marcel Halbach; Johannes Winkler; Jennifer J.S. Baunach; Alisa Katsen-Globa; Heiko Zimmermann; Yen Choo; Jürgen Hescheler; Agapios Sachinidis

Embryonic Stem (ES) cells-derived cardiomyocytes can possibly be applied for cell therapy of diseases such as heart failure. Biodegradable scaffolds will significantly improve the expansion of sufficient functional ES cell-derived cardiomyocytes and may also increase the survival rate of cardiomyocytes after their transplantation. In the present study, we cultivated cardiomyocytes isolated from a transgenic a-myosin heavy chain (α-MHC) ES cell lineage expressing both puromycin resistance and enhanced green fluorescent protein (EGFP) under the control of the α-MHC promoter in macroporous gelatine microspheres using small-scale bioreactors and proved that cardiomyocytes function after their cultivation in micropsperes. The average number of cultivated cells per microsphere was optimised once the most suitable agitation conditions and the optimal timeframe of cultivation were identified. Our study shows that 72% of CultiSpher-S beads were colonised by cardiomyocytes under optimal conditions. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) showed that colonization of the beads was not limited to the surface, but that cells also invaded the inner surfaces of the microspheres. Electrophysiological experiments demonstrated that the action potentials (APs) of α-MHC+ cardiomyocytes entrapped in microspheres were identical to action potentials of control cells. This attractive approach for cultivation and expansion of functional cardiomyocytes in biodegradable macroporous may offer a perspective for higher transplantation efficiencies of ES cell-derived cardiomyocytes.

Collaboration


Dive into the Marcel Halbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Krausgrill

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge