Marcel Jackson
La Trobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcel Jackson.
principles and practice of constraint programming | 2013
Jakub Bulín; Dejan Delić; Marcel Jackson; Todd Niven
It is well known that the constraint satisfaction problem over general relational structures can be reduced in polynomial time to digraphs. We present a simple variant of such a reduction and use it to show that the algebraic dichotomy conjecture is equivalent to its restriction to digraphs and that the polynomial reduction can be made in logspace. We also show that our reduction preserves the bounded width property, i.e., solvability by local consistency methods. We discuss further algorithmic properties that are preserved and related open problems. The first author was supported by the grant projects GACR 201/09/H012, GA UK 67410, SVV-2013-267317; the second author gratefully acknowledges support by the Natural Sciences and Engineering Research Council of Canada in the form of a Discovery Grant; the third and fourth were supported by ARC Discovery Project DP1094578; the first and fourth authors were also supported by the Fields Institute.
International Journal of Algebra and Computation | 2000
Marcel Jackson; Olga Sapir
For W a finite set of words, we consider the Rees quotient of a free monoid with respect to the ideal consisting of all words that are not subwords of W. This resulting monoid is denoted by S(W). It is shown that for every finite set of words W, there are sets of words U⊃W and V⊃W such that the identities satisfied by S(V) are finitely based and those of S(U) are not finitely based [regardless of the situation for S(W)]. The first examples of finitely based (not finitely based) aperiodic finite semigroups whose direct product is not finitely based (finitely based) are presented and it is shown that every monoid of the form S(W) with fewer than 9 elements is finitely based and that there is precisely one not finitely based 9 element example.
Communications in Algebra | 2009
Marcel Jackson; Tim E. Stokes
The semigroup of all partial maps on a set under the operation of composition admits a number of operations relating to the domain and range of a partial map. Of particular interest are the operations R and L returning the identity on the domain of a map and on the range of a map respectively. Schein [25] gave an axiomatic characterisation of the semigroups with R and L representable as systems of partial maps; the class is a finitely axiomatisable quasivariety closely related to ample semigroups (which were introduced—as type A semigroups—by Fountain, [7]). We provide an account of Scheins result (which until now appears only in Russian) and extend Scheins method to include the binary operations of intersection, of greatest common range restriction, and some unary operations relating to the set of fixed points of a partial map. Unlike the case of semigroups with R and L, a number of the possibilities can be equationally axiomatised.
International Journal of Algebra and Computation | 2011
Marcel Jackson; Tim E. Stokes
Restriction semigroups model algebras of partial maps under composition and domain. Here we consider restriction semigroups for which the usual Boolean operations on domains are modeled. Such algebras are capable of modeling the usual modal operators considered in dynamic logic. Indeed adding a natural functional variant of union to the signature gives a deterministic version of the modal semirings of Moller and Struth, but also a monoidal version of the classical restriction categories of Cockett and Manes. Other operations modeled are intersection and (in the finite case) functional iteration. In each case, axiomatizations of the concrete functional examples are given, leading to algebraic models of partial maps incorporating all the domain-related and set-theoretic operations previously considered. Our algebras furnish natural algebraic semantics for the logics of deterministic computer programs, leading to new results for some variants of propositional dynamic logic.
arXiv: Logic | 2010
Marcel Jackson; Mikhail V. Volkov
We establish a surprisingly close relationship between universal Horn classes of directed graphs and varieties generated by so-called adjacency semigroups which are Rees matrix semigroups over the trivial group with the unary operation of reversion. In particular, the lattice of subvarieties of the variety generated by adjacency semigroups that are regular unary semigroups is essentially the same as the lattice of universal Horn classes of reflexive directed graphs. A number of examples follow, including a limit variety of regular unary semigroups and finite unary semigroups with NP-hard variety membership problems.
Transactions of the American Mathematical Society | 2008
Marcel Jackson; Mikhail V. Volkov
We prove that every semigroup S whose quasivariety contains a 3-nilpotent semigroup or a semigroup of index more than 2 has no finite basis for its quasi-identities provided that one of the following properties holds: • S is finite; • S has a faithful representation by injective partial maps on a set; • S has a faithful representation by order preserving maps on a chain. As a corollary it is shown that, in an asymptotic sense, almost all finite semigroups and finite monoids admit no finite basis for their quasi-identities.
Logical Methods in Computer Science | 2015
Jakub Bulín; Dejan Delić; Marcel Jackson; Todd Niven
It is well known that the constraint satisfaction problem over a general relational structure A is polynomial time equivalent to the constraint problem over some associated digraph. We present a variant of this construction and show that the corresponding constraint satisfaction problem is logspace equivalent to that over A. Moreover, we show that almost all of the commonly encountered polymorphism properties are held equivalently on the A and the constructed digraph. As a consequence, the Algebraic CSP dichotomy conjecture as well as the conjectures characterizing CSPs solvable in logspace and in nondeterministic logspace are equivalent to their restriction to digraphs.
Studia Logica | 2013
Marcel Jackson; Belinda Trotta
We observe a number of connections between recent developments in the study of constraint satisfaction problems, irredundant axiomatisation and the study of topological quasivarieties. Several restricted forms of a conjecture of Clark, Davey, Jackson and Pitkethly are solved: for example we show that if, for a finite relational structure M, the class of M-colourable structures has no finite axiomatisation in first order logic, then there is no set (even infinite) of first order sentences characterising the continuously M-colourable structures amongst compact totally disconnected relational structures. We also refute a rather old conjecture of Gorbunov by presenting a finite structure with an infinite irredundant quasi-identity basis.
Journal of The Australian Mathematical Society | 2008
Brian A. Davey; Marcel Jackson; Miklós Maróti; Ralph McKenzie
We give a new proof that a finitely generated congruence-distributive variety has finitely determined syntactic congruences (or, equivalently, term finite principal congruences), and show that the same does not hold for finitely generated congruence-permutable varieties, even under the additional assumption that the variety is residually very finite.
principles and practice of constraint programming | 2011
Christopher Mears; Todd Niven; Marcel Jackson; Mark Wallace
The presence of symmetries in a constraint satisfaction problem gives an opportunity for more efficient search. Within the class of matrix models, we show that the problem of deciding whether some well known permutations are model symmetries (solution symmetries on every instance) is undecidable. We then provide a new approach to proving the model symmetries by way of model transformations. Given a model M and a candidate symmetry σ, the approach first syntactically applies σ to M and then shows that the resulting model σ(M) is semantically equivalent to M. We demonstrate this approach with an implementation that reduces equivalence to a sentence in Presburger arithmetic, using the modelling language MiniZinc and the term re-writing language Cadmium, and show that it is capable of proving common symmetries in models.