Marcel Meissner
Saarland University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcel Meissner.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Catrin S. Müller; Alexander Haupt; Wolfgang Bildl; Jens Schindler; Hans-Günther Knaus; Marcel Meissner; Burkhard Rammner; Jörg Striessnig; Veit Flockerzi; Bernd Fakler; Uwe Schulte
Local Ca2+ signaling occurring within nanometers of voltage-gated Ca2+ (Cav) channels is crucial for CNS function, yet the molecular composition of Cav channel nano-environments is largely unresolved. Here, we used a proteomic strategy combining knockout-controlled multiepitope affinity purifications with high-resolution quantitative MS for comprehensive analysis of the molecular nano-environments of the Cav2 channel family in the whole rodent brain. The analysis shows that Cav2 channels, composed of pore-forming α1 and auxiliary β subunits, are embedded into protein networks that may be assembled from a pool of ∼200 proteins with distinct abundance, stability of assembly, and preference for the three Cav2 subtypes. The majority of these proteins have not previously been linked to Cav channels; about two-thirds are dedicated to the control of intracellular Ca2+ concentration, including G protein-coupled receptor-mediated signaling, to activity-dependent cytoskeleton remodeling or Ca2+-dependent effector systems that comprise a high portion of the priming and release machinery of synaptic vesicles. The identified protein networks reflect the cellular processes that can be initiated by Cav2 channel activity and define the molecular framework for organization and operation of local Ca2+ signaling by Cav2 channels in the brain.
Nature Immunology | 2007
Rudi Vennekens; Jenny Olausson; Marcel Meissner; Wilhelm Bloch; Ilka Mathar; Stephan E. Philipp; Frank Schmitz; Petra Weissgerber; Bernd Nilius; Veit Flockerzi; Marc Freichel
Mast cells are key effector cells in allergic reactions. Aggregation of the receptor FcεRI in mast cells triggers the influx of calcium (Ca2+) and the release of inflammatory mediators. Here we show that transient receptor potential TRPM4 proteins acted as calcium-activated nonselective cation channels and critically determined the driving force for Ca2+ influx in mast cells. Trpm4−/− bone marrow–derived mast cells had more Ca2+ entry than did TRPM4+/+ cells after FcεRI stimulation. Consequently, Trpm4−/− bone marrow–derived mast cells had augmented degranulation and released more histamine, leukotrienes and tumor necrosis factor. Trpm4−/− mice had a more severe IgE-mediated acute passive cutaneous anaphylactic response, whereas late-phase passive cutaneous anaphylaxis was not affected. Our results establish the physiological function of TRPM4 channels as critical regulators of Ca2+ entry in mast cells.
Nature Communications | 2012
Norbert Weissmann; Akylbek Sydykov; Hermann Kalwa; Ursula Storch; Beate Fuchs; Michael Mederos y Schnitzler; Ralf P. Brandes; Friedrich Grimminger; Marcel Meissner; Marc Freichel; Stefan Offermanns; Florian Veit; Oleg Pak; Karl-Heinz Krause; Ralph T. Schermuly; Alison C. Brewer; Harald Schmidt; Werner Seeger; Ajay M. Shah; Thomas Gudermann; Hossein Ardeschir Ghofrani; Alexander Dietrich
Lung ischaemia–reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2y/−) or the classical transient receptor potential channel 6 (TRPC6−/−) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca2+ influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2y/− cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-γ, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE.
Journal of Clinical Investigation | 2010
Ilka Mathar; Rudi Vennekens; Marcel Meissner; Frieder Kees; Gerry Van der Mieren; Juan E. Camacho Londoño; Sebastian Uhl; Thomas Voets; Björn Hummel; An Van Den Bergh; Paul Herijgers; Bernd Nilius; Veit Flockerzi; Frank Schweda; Marc Freichel
Hypertension is an underlying risk factor for cardiovascular disease. Despite this, its pathogenesis remains unknown in most cases. Recently, the transient receptor potential (TRP) channel family was associated with the development of several cardiovascular diseases linked to hypertension. The melastatin TRP channels TRPM4 and TRPM5 have distinct properties within the TRP channel family: they form nonselective cation channels activated by intracellular calcium ions. Here we report the identification of TRPM4 proteins in endothelial cells, heart, kidney, and chromaffin cells from the adrenal gland, suggesting that they have a role in the cardiovascular system. Consistent with this hypothesis, Trpm4 gene deletion in mice altered long-term regulation of blood pressure toward hypertensive levels. No changes in locomotor activity, renin-angiotensin system function, electrolyte and fluid balance, vascular contractility, and cardiac contractility under basal conditions were observed. By contrast, inhibition of ganglionic transmission with either hexamethonium or prazosin abolished the difference in blood pressure between Trpm4-/- and wild-type mice. Strikingly, plasma epinephrine concentration as well as urinary excretion of catecholamine metabolites were substantially elevated in Trpm4-/- mice. In freshly isolated chromaffin cells, lack of TRPM4 was shown to cause markedly more acetylcholine-induced exocytotic release events, while neither cytosolic calcium concentration, size, nor density of vesicles were different. We therefore conclude that TRPM4 proteins limit catecholamine release from chromaffin cells and that this contributes to increased sympathetic tone and hypertension.
Journal of Biological Chemistry | 2011
Sachar Lambert; Anna Drews; Oleksandr Rizun; Thomas F. J. Wagner; Annette Lis; Stephanie Mannebach; Sandra Plant; Melanie Portz; Marcel Meissner; Stephan E. Philipp; Johannes Oberwinkler
TRPM1 is the founding member of the melastatin subgroup of transient receptor potential (TRP) proteins, but it has not yet been firmly established that TRPM1 proteins form ion channels. Consequently, the biophysical and pharmacological properties of these proteins are largely unknown. Here we show that heterologous expression of TRPM1 proteins induces ionic conductances that can be activated by extracellular steroid application. However the current amplitudes observed were too small to enable a reliable biophysical characterization. We overcame this limitation by modifying TRPM1 channels in several independent ways that increased the similarity to the closely related TRPM3 channels. The resulting constructs produced considerably larger currents after overexpression. We also demonstrate that unmodified TRPM1 and TRPM3 proteins form functional heteromultimeric channels. With these approaches, we measured the divalent permeability profile and found that channels containing the pore of TRPM1 are inhibited by extracellular zinc ions at physiological concentrations, in contrast to channels containing only the pore of TRPM3. Applying these findings to pancreatic β cells, we found that TRPM1 proteins do not play a major role in steroid-activated currents of these cells. The inhibition of TRPM1 by zinc ions is primarily due to a short stretch of seven amino acids present only in the pore region of TRPM1 but not of TRPM3. Combined, our data demonstrate that TRPM1 proteins are bona fide ion-conducting plasma membrane channels. Their distinct biophysical properties allow a reliable identification of endogenous TRPM1-mediated currents.
Nature Immunology | 2009
Mithilesh K Jha; Abdallah Badou; Marcel Meissner; John E. McRory; Marc Freichel; Veit Flockerzi; Richard A. Flavell
The survival of T lymphocytes requires sustained, Ca2+ influx–dependent gene expression. The molecular mechanism that governs sustained Ca2+ influx in naive T lymphocytes is unknown. Here we report an essential role for the β3 regulatory subunit of voltage-gated calcium (Cav) channels in the maintenance of naive CD8+ T cells. Deficiency in β3 resulted in a profound survival defect of CD8+ T cells. This defect correlated with depletion of the pore-forming subunit Cav1.4 and attenuation of T cell antigen receptor (TCR)-mediated global Ca2+ entry in CD8+ T cells. Cav1.4 and β3 associated with T cell signaling machinery and Cav1.4 localized in lipid rafts. Our data demonstrate a mechanism by which Ca2+ entry is controlled by a Cav1.4-β3 channel complex in T cells.
Journal of Biological Chemistry | 2009
Sabine Link; Marcel Meissner; Brigitte Held; Andreas Beck; Petra Weissgerber; Marc Freichel; Veit Flockerzi
By now, little is known on L-type calcium channel (LTCC) subunits expressed in mouse heart. We show that CaVβ2 proteins are the major CaVβ components of the LTCC in embryonic and adult mouse heart, but that in embryonic heart CaVβ3 proteins are also detectable. At least two CaVβ2 variants of ∼68 and ∼72 kDa are expressed. To identify the underlying CaVβ2 variants, cDNA libraries were constructed from poly(A)+ RNA isolated from hearts of 7-day-old and adult mice. Screening identified 60 independent CaVβ2 cDNA clones coding for four types of CaVβ2 proteins only differing in their 5′ sequences. CaVβ2-N1, -N4, and -N5 but not -N3 were identified in isolated cardiomyocytes by RT-PCR and were sufficient to reconstitute the CaVβ2 protein pattern in vitro. Significant L-type Ca2+ currents (ICa) were recorded in HEK293 cells after co-expression of CaV1.2 and CaVβ2. Current kinetics were determined by the type of CaVβ2 protein, with the ∼72-kDa CaVβ2a-N1 shifting the activation of ICa significantly to depolarizing potentials compared with the other CaVβ2 variants. Inactivation of ICa was accelerated by CaVβ2a-N1 and -N4, which also lead to slower activation compared with CaVβ2a-N3 and -N5. In summary, this study reveals the molecular LTCC composition in mouse heart and indicates that expression of various CaVβ2 proteins may be used to adapt the properties of LTCCs to changing myocardial requirements during development and that CaVβ2a-N1-induced changes of ICa kinetics might be essential in embryonic heart.
Pflügers Archiv: European Journal of Physiology | 2005
Veit Flockerzi; Christine Jung; Thomas Aberle; Marcel Meissner; Marc Freichel; Stephan E. Philipp; Wolfgang Nastainczyk; Patrick Maurer; Richard Zimmermann
In mouse tissues two variants of the transient receptor potential (canonical) (TRPC) 4 protein are expressed: the “full-length” TRPC4 protein and a slightly smaller variant, called TRPC4Δ761-864, which lacks 84 amino acid residues. Although the presence of mRNA encoding the TRPC4 protein in mammalian cells and the detection of the heterologously expressed TRPC4 protein by Western blot analysis have been reported, the unequivocal detection of endogenous TRPC4 proteins has proven difficult. In the present study we compared polyclonal antibodies for the detection of TRPC4 proteins in mouse tissues and monitored their specificity and reliability by analysing corresponding tissues from TRPC4-deficient mice. In addition we introduced a procedure that allows us to estimate the amount of TRPC4 protein expressed in a single cell. Using this technique it appears that the amount of TRPC4 protein expressed stably in HEK 293 cells is at least fourfold higher than the amount of TRPC4 protein expressed endogenously in the bovine adrenocortical cell line SBAC.
Journal of Biological Chemistry | 2011
Marcel Meissner; Petra Weissgerber; Juan E. Camacho Londoño; Jean Prenen; Sabine Link; Sandra Ruppenthal; Jeffery D. Molkentin; Peter Lipp; Bernd Nilius; Marc Freichel; Veit Flockerzi
The major L-type voltage-gated calcium channels in heart consist of an α1C (CaV1.2) subunit usually associated with an auxiliary β subunit (CaVβ2). In embryonic cardiomyocytes, both the complete and the cardiac myocyte-specific null mutant of CaVβ2 resulted in reduction of L-type calcium currents by up to 75%, compromising heart function and causing defective remodeling of intra- and extra-embryonic blood vessels followed by embryonic death. Here we conditionally excised the CaVβ2 gene (cacnb2) specifically in cardiac myocytes of adult mice (KO). Upon gene deletion, CaVβ2 protein expression declined by >96% in isolated cardiac myocytes and by >74% in protein fractions from heart. These latter protein fractions include CaVβ2 proteins expressed in cardiac fibroblasts. Surprisingly, mice did not show any obvious impairment, although cacnb2 excision was not compensated by expression of other CaVβ proteins or changes of CaV1.2 protein levels. Calcium currents were still dihydropyridine-sensitive, but current density at 0 mV was reduced by <29%. The voltage for half-maximal activation was slightly shifted to more depolarized potentials in KO cardiomyocytes when compared with control cells, but the difference was not significant. In summary, CaVβ2 appears to be a much stronger modulator of L-type calcium currents in embryonic than in adult cardiomyocytes. Although essential for embryonic survival, CaVβ2 down-regulation in cardiomyocytes is well tolerated by the adult mice.
Cell Calcium | 2007
Brigitte Held; Volodymyr Tsvilovskyy; Marcel Meissner; Lars Kaestner; Andreas Ludwig; Sven Mossmang; Peter Lipp; Marc Freichel; Veit Flockerzi