Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel Regelous is active.

Publication


Featured researches published by Marcel Regelous.


Geochemistry Geophysics Geosystems | 2004

Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member : evidence from the Samoan Volcanic Chain

Rhea K. Workman; Stanley R. Hart; Matthew G. Jackson; Marcel Regelous; Kenneth A. Farley; Jerzy S. Blusztajn; Mark D. Kurz; Hubert Staudigel

An in-depth Sr-Nd-Pb-He-Os isotope and trace element study of the EMII-defining Samoan hot spot lavas leads to a new working hypothesis for the origin of this high 87Sr/86Sr mantle end-member. Systematics of the Samoan fingerprint include (1) increasing 206Pb/204Pb with time - from 18.6 at the older, western volcanoes to 19.4 at the present-day hot spot center, Vailuluu Seamount, (2) en-echelon arrays in 206Pb/204Pb – 208Pb/204Pb space which correspond to the two topographic lineaments of the 375 km long volcanic chain – this is much like the Kea and Loa Trends in Hawaii, (3) the highest 87Sr/86Sr (0.7089) of all oceanic basalts, (4) an asymptotic decrease in 3He/4He from 24 RA [Farley et al., 1992] to the MORB value of 8 RA with increasing 87Sr/86Sr, and (5) mixing among four components which are best described as the “enriched mantle”, the depleted FOZO mantle, the (even more depleted) MORB Mantle, and a mild HIMU (high 238U/204Pb) mantle component. A theoretical, “pure” EMII lava composition has been calculated and indicates an extremely smooth trace element pattern of this end-member mantle reservoir. The standard recycling model (of ocean crust/sediment) fails as an explanation for producing Samoan EM2, due to these smooth spidergrams for EM2 lavas, low 187Os/188Os ratios and high 3He/4He (>8 RA). Instead, the origin of EM2 has been modeled with the ancient formation of metasomatised oceanic lithosphere, followed by storage in the deep mantle and return to the surface in the Samoan plume.


Journal of Geophysical Research | 1999

Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′N

Yaoling Niu; Rodey Batiza; J.Immo Wendt; Marcel Regelous

The East Pacific Rise (EPR) at 11°20′N erupts an unusually high proportion of enriched mid-ocean ridge basalts (E-MORB) and thus is ideal for studying the origin of the enriched heterogeneities in the EPR mantle far from mantle plumes. These basalts exhibit large compositional variations (e.g., [La/Sm]N = 0.68–1.47, 87Sr/86Sr = 0.702508–0.702822, and 143Nd/144Nd = 0.513053–0.513215). The 87Sr/86Sr and 143Nd/144Nd correlate with each other, with ratios of incompatible elements (e.g., Ba/Zr, La/Sm, and Sm/Yb) and with the abundances and ratios of major elements (TiO2, Al2O3, FeO, CaO, Na2O, and CaO/Al2O3) after correction for fractionation effect. These correlations are interpreted to result from melting of a two-component mantle with the enriched component residing as physically distinct domains in the ambient depleted matrix. The observation of [Nb/Th]PM > 1 and [Ta/U]PM > 1, plus fractionated Nb/U, Ce/Pb, and Nb/La ratios, in lavas from the northern EPR region suggests that the enriched domains and depleted matrix both are constituents of recycled oceanic lithosphere. The recycled crustal/eclogitic lithologies are the major source of the enriched domains, whereas the recycled mantle/peridotitic residues are the most depleted matrix. On Pb-Sr isotope plot, the 11°20′N data form a trend orthogonal to the main trend defined by the existing EPR data, indicating that the enriched component has high 87Sr/86Sr and low 206Pb/204Pb and 143Nd/144Nd. This isotopic relationship, together with mantle tomographic studies, suggests that the source material of 11°20′N lavas may have come from the Hawaiian plume. This “distal plume-ridge interaction” between the EPR and Hawaii contrasts with the “proximal plume-ridge interactions” seen along the Mid-Atlantic Ridge. The so-called “garnet signature” in MORB is interpreted to result from partial melting of the eclogitic lithologies. The positive Na8-Si8/Fe8 and negative Ca8/Al8-Si8/Fe8 trends defined by EPR lavas result from mantle compositional (vs. temperature) variation.


Earth and Planetary Science Letters | 2002

Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component

Yaoling Niu; Marcel Regelous; Immo J. Wendt; Rodey Batiza; Mike J. O’Hara

Niu and Batiza [Earth Planet. Sci. Lett. 148 (1997) 471^483] show that lavas from the seamounts on the flanks of the East Pacific Rise (EPR) between 5‡ and 15‡N vary from extremely depleted tholeiites to highly enriched alkali basalts. The extent of depletion and enrichment exceeds the known range of seafloor lavas in terms of the abundances and ratios of incompatible elements. New Sr^Nd^Pb isotope data for these lavas show variations ( 87 Sr/ 86 Sr = 0.702362^0.702951; 206 Pb/ 204 Pb = 18.080^19.325 and 143 Nd/ 144 Nd 0.512956^0.513183) larger than observed in lavas erupted on the nearby EPR axis. These isotopic ratios correlate with each other, with the abundances and ratios of incompatible elements, with the abundances of measured major elements such as MgO, CaO, Na2O and TiO2 contents, and with the abundances and ratios of major elements corrected for crystal fractionation to Mg# = 0.72 (Ti72 ,A l 72 ,F e 72 ,C a 72 ,N a 72, and Ca72/Al72). These coupled correlations and the spatial distribution of seamounts require an EPR mantle source that has long-term (s 1 Ga) lithological heterogeneities on very small scales [Niu and Batiza, Earth Planet. Sci. Lett. 148 (1997) 471^483]. Mid-ocean ridge basalt (MORB) major element systematics are, to a great extent, inherited from their fertile sources, which requires caution when using major element data to infer melting conditions. The significant correlations in elemental and isotopic variability (defined as RSD% = 1c/ meanU100) between seamount and axial lavas suggest that both seamount and axial volcanisms share a common heterogeneous mantle source. We confirm previous interpretations [Niu and Batiza, Earth Planet. Sci. Lett. 148 (1997) 471^483; Niu et al., J. Geophys. Res. 104 (1999) 7067^7087] that the geochemical variability of lavas from the broad northern EPR region results from melting-induced mixing of a two-component mantle with the enriched (easily melted) component dispersed as physically distinct domains in a more depleted (refractory) matrix prior to the major melting events. The data also allow the conclusion that recycled oceanic crust cannot explain elevated abundances of elements such as Ba, Rb, Cs, Th, U, K, Pb, Sr etc. in enriched MORB and many ocean island basalts. These elements will be depleted in recycled oceanic crust that has passed through subduction zone dehydration reactions. We illustrate that deep portions of recycled oceanic lithosphere are important geochemical reservoirs hosting these and other incompatible elements as a result of metasomatism taking place at the interface between the low velocity zone and the cooling and thickening oceanic lithosphere. K 2002 Elsevier Science B.V. All rights reserved.


Earth and Planetary Science Letters | 1999

Variations in the geochemistry of magmatism on the East Pacific Rise at 10?30'N since 800 ka

Marcel Regelous; Yaoling Niu; J. I. Wendt; Rodey Batiza; Alan Greig

Samples of volcanic rock, collected from the flanks of the East Pacific Rise at 10o30 0 N, were used to investigate changes in the geochemistry of magmatism at the ridge axis, over the past 800 ka at this location. We show that there have been large variations in the major element chemistry of the lavas erupted at the spreading axis on this ridge segment over this period. For example, the average MgO content of lavas erupted at the ridge axis increased from about 3.0% at 600 ka, to about 7.0% at 300 ka. Since 300 ka the average MgO content has systematically decreased, and the average MgO content of lavas collected from within the neovolcanic zone at 10o30 0 N is 6.0%. These temporal changes in major element chemistry are not accompanied by systematic changes in isotope composition or incompatible trace element ratios, and are interpreted to reflect changes in the average rate of supply of melt to the ridge axis during this period. The data support previous arguments that changes in melt supply rate over periods of 100‐1000 ka have an important influence on the major element chemistry of the lavas erupted at fast spreading ridges. At 10o30 0 N, the melt supply rate appears to have been relatively low for much of the past 800 ka. Samples younger than 50 ka, collected from within 3 km of the ridge axis at 10o30 0 N (inside the neovolcanic zone), have a smaller range in major element chemistry compared to the samples dredged from the ridge flanks. Variations in the chemistry of lavas erupted over periods of less than about 100 ka may be controlled by the geometry of the magma plumbing system beneath the ridge axis.


Geology | 1997

Evidence for a contribution from two mantle plumes to island-arc lavas from northern Tonga

J. I. Wendt; Marcel Regelous; A. Ewart

Lavas from the islands of Tafahi and Niuatoputapu, at the northern end of the active Tonga-Kermadec arc in the southwest Pacific, were erupted at a convergent plate margin, yet they can be shown to contain a contribution from two different mantle plumes. High concentrations of Nb relative to other high field strength elements in these lavas, compared to other Tonga lavas, reflect an ocean island basalt component in the mantle wedge derived from the nearby Samoa mantle plume. Pb isotope compositions indicate that most of the Pb in these lavas is derived from the oceanic crust of the plume-generated Louisville Seamount Chain, which is being subducted beneath the Tonga arc. These two plume components were thus introduced into the arc lavas in very different ways and provide insight into upper-mantle dynamics and magma-generation processes occurring in an active arc–back-arc system.


Earth and Planetary Science Letters | 1999

Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific

J.Immo Wendt; Marcel Regelous; Yaoling Niu; Roger Hekinian

Young intra-transform lavas erupted as a result of extension within the Garrett Transform Fault on the southern East Pacific Rise, are more porphyritic, less evolved, have lower concentrations of incompatible trace elements, and lower ratios of more incompatible to less incompatible elements (e.g. low K/Ti and La/Sm) compared to lavas from the adjacent East Pacific Rise ridge axis. Sr, Nd and Pb isotope compositions overlap with the depleted end of the field for Pacific mid-ocean ridge basalts, but extend to lower Sr-87/Sr-86 (0.702137), Pb-206/Pb-204 (17.462), Pb-207/Pb-204 (15.331), Pb-208/Pb-204 (36.831), and higher Nd-143/Nd-144 (0.513345) than any lavas previously reported from the Pacific. Peridotites from the Garrett Transform have Nd isotope compositions within the range of the intra-transform lavas. The unusual major and trace element compositions of the Garrett lavas appear to be characteristic of other intra-transform lavas from elsewhere in the Pacific. The chemical and isotopic features of the Garrett lavas can be explained by remelting, beneath the transform, a two-component upper mantle which was depleted in incompatible element-enriched heterogeneities during melting beneath the East Pacific Rise ridge axis (within the past 1 Ma). Our data place new constraints on the trace element and isotope composition of the depleted mantle component that contributes to magmatism in the Pacific, and show that this component is heterogeneous, both on the scale of a single transform fault, and on the scale of an ocean basin


Geochimica et Cosmochimica Acta | 2003

Contrasting geochemical patterns in the 3.7-3.8 Ga pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland : implications for postmagmatic alteration processes

Ali Polat; Albrecht W. Hofmann; Carsten Münker; Marcel Regelous; Peter W.U. Appel

Abstract Pillow basalts from the early Archean (3.7 to 3.8 Ga) Isua greenstone belt, West Greenland, are characterized by well-preserved rims and concentric core structures. The pillow rims and cores have different mineral assemblages, and chemical and isotopic compositions. The rims have systematically higher contents of Fe2O3, MgO, MnO, K2O, Rb, Ba, Ga, Y, and transition metals than the cores. In contrast, the cores possess higher concentrations of SiO2, Na2O, P2O5, Sr, Pb, U, Nb, and the light rare earth elements (REEs than the rims). These compositional variations in the rims and cores are likely to reflect the mobility of these elements during posteruption alteration. Variations of many major and trace element concentrations between the rims and cores of the Isua pillow basalts are comparable to those of modern pillow basalts undergoing seafloor hydrothermal alteration. Al2O3, TiO2, Th, Zr, and the heavy REEs display similar values in both rims and cores, suggesting that these elements were relatively immobile during postemplacement alteration. In addition, the rims and cores have distinctive Sm-Nd and Rb-Sr isotopic compositions in that the rims are characterized by higher 143Nd/144Nd and 87Sr/86Sr ratios than the cores. The pillow basalts yield 2569 ± 170 Ma and 1604 ± 170 Ma errorchron ages on 143Nd/144Nd vs. 147Sm/144Nd and 87Sr/86Sr vs. 87Rb/86Sr diagrams, respectively. The Sm-Nd errorchron age may correspond, within errors, to a late Archean tectonothermal metamorphic event recorded in the region. The Sm-Nd errorchron may have resulted from a combination of isotopic homogenization and preferential loss of Nd, relative to Sm, during late Archean metamorphism. Although the Rb-Sr errorchron age overlaps with the timing of an early to mid-Proterozoic tectonothermal metamorphic event recorded in the region, because of a considerably large mean square of weighted deviates value and scatter in 86Sr/87Sr and 87Rb/86Sr ratios, this age may not have a precise geological significance. The 1.6 Ga Rb-Sr errorchron is likely to have resulted from the loss of radiogenic 87Sr. Collectively, the Sm-Nd and Rb-Sr data obtained from the 3.7–3.8 Ga Isua pillow basalt rims and cores are consistent with disturbances of the Sm-Nd and Rb-Sr systems by tectonothermal metamorphic events long after their eruption. In contrast to the Sm-Nd and Rb-Sr systems, the Lu-Hf system appears to be largely undisturbed by metamorphism. Five core samples and three rim samples yield a 3935 ± 350 Ma age, within error of the approximate age of eruption (3.7 to 3.8 Ga). Two rim samples that have gained Lu give an age of 1707 ± 140 Ma, within error of the Rb-Sr errorchron age. Initial 176Hf/177Hf ratios of the undisturbed samples at 3.75 Ga lie within ±1 e-unit of the chondritic value, suggesting no long-term depletion in the mantle source of the basalts.


Geochemistry Geophysics Geosystems | 2005

Origin of depleted components in basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios

Frederick A. Frey; Shichun Huang; Janne Blichert-Toft; Marcel Regelous; Maud Boyet

[1]xa0The radiogenic isotopic ratios of Sr, Nd, Hf, and Pb in basaltic lavas associated with major hot spots, such as Hawaii, document the geochemical heterogeneity of their mantle source. What processes created such heterogeneity? For Hawaiian lavas there has been extensive discussion of geochemically enriched source components, but relatively little attention has been given to the origin of depleted source components, that is, components with the lowest 87Sr/86Sr and highest 143Nd/144Nd and 176Hf/177Hf. The surprisingly important role of a depleted component in the source of the incompatible element-enriched, rejuvenated-stage Hawaiian lavas is well known. A depleted component also contributed significantly to the ∼76–81 Ma lavas erupted at Detroit Seamount in the Emperor Seamount Chain. In both cases, major involvement of MORB-related depleted asthenosphere or lithosphere has been proposed. Detroit Seamount and rejuvenated-stage lavas, however, have important isotopic differences from most Pacific MORB. Specifically, they define trends to relatively unradiogenic Pb isotope ratios, and most Emperor Seamount lavas define a steep trend of 176Hf/177Hf versus 143Nd/144Nd. In addition, lavas from Detroit Seamount and recent rejuvenated-stage lavas have relatively high Ba/Th, a characteristic of lavas associated with the Hawaiian hot spot. It is possible that a depleted component, intrinsic to the hot spot, has contributed to these young and old lavas related to the Hawaiian hot spot. The persistence of such a component over 80 Myr is consistent with a long-lived source, i.e., a plume.


Geochemistry Geophysics Geosystems | 2005

Petrogenesis of lavas from Detroit Seamount: Geochemical differences between Emperor Chain and Hawaiian volcanoes

Shichun Huang; Marcel Regelous; Thorvaldur Thordarson; Frederick A. Frey

[1]xa0The Hawaiian Ridge and Emperor Seamount Chain define a hot spot track that provides an 80 Myr record of Hawaiian magmatism. Detroit Seamount (∼76 to 81 Ma) is one of the oldest Emperor Seamounts. Volcanic rocks forming this seamount have been cored by the Ocean Drilling Program at six locations. Only tholeiitic basalt occurs at Site 884 on the eastern flank and only alkalic basalt, probably postshield lavas, occurs at Sites 883 and 1204 on the summit plateau. However, at Site 1203 the basement core (453 m penetration) includes four thick flows of pahoehoe alkalic basalt underlying ∼300 m of volcaniclastic rocks interbedded with submarine erupted tholeiitic basalt. The geochemical characteristics of these alkalic lavas indicate that phlogopite was important in their petrogenesis; they may represent preshield stage volcanism. The surprising upward transition from subaerial to submarine eruptives implies rapid subsidence of the volcano, which can be explained by the inferred near-ridge axis setting of the seamount at ∼80 Ma. A near-ridge axis setting with thin lithosphere is also consistent with a shallow depth of melt segregation for Detroit Seamount magmas relative to Hawaiian magmas, and the significant role for plagioclase fractionation as the Detroit Seamount magmas evolved in the crust. An important long-term trend along the hot spot track is that 87Sr/86Sr decreases in lavas erupted from ∼40 to 80 Ma. Tholeiitic basalt at Site 884 on Detroit Seamount is the extreme and overlaps with the 87Sr/86Sr-143Nd/144Nd field of Pacific mid-ocean ridge basalts (MORB). Complementary evidence for a depleted component in Detroit Seamount lavas is that relative to Hawaiian basalt, Detroit Seamount lavas have lower abundances of incompatible elements at a given MgO content. These lavas, especially from Sites 883 and 884, trend to extremely unradiogenic Pb isotopic ratios which are unlike MORB erupted at the East Pacific Rise. A component with relatively low 87Sr/86Sr and 206Pb/204Pb is required. Lavas erupted from a spreading center in the Garrett transform fault, 13°28′S on the East Pacific Rise, have this characteristic. A plausible hypothesis is mixing of a plume-related component with a component similar to that expressed in lavas from the Garrett transform fault. However, basaltic glasses from Detroit Seamount also have relatively high Ba/Th, a distinctive characteristic of Hawaiian lavas. We argue that all Detroit Seamount lavas, including those from Site 884, are related to the Hawaiian hot spot. Rejuvenated stage Hawaiian lavas also have high Ba/Th and define a trend to low 87Sr/86Sr and 206Pb/204Pb. We speculate that rejuvenated stage lavas and Detroit Seamount lavas sample a depleted mantle component, intrinsic to the plume, over the past 80 Myr.


Geochemistry Geophysics Geosystems | 2011

Lithospheric control on geochemical composition along the Louisville Seamount Chain

Christoph Beier; Loÿc Vanderkluysen; Marcel Regelous; John J. Mahoney; Dieter Garbe-Schönberg

Major and trace element and Sr, Nd, and Pb isotope data for lavas from 12 seamounts along the western (older) 1500 km section of the Louisville Seamount Chain in the southwest Pacific show remarkably uniform compositions over a similar to 30-40 Myr period of volcanism. All 56 samples analyzed are alkalic to transitional in composition. Unlike Hawaiian volcanoes, Louisville volcanoes appear not to pass through a sequence of evolutionary stages characterized by older tholeiitic basalts overlain by incompatible element enriched alkalic and silica-undersaturated lavas. The youngest lavas from a given Louisville seamount tend to have the least enriched incompatible element compositions. This unusual chemical evolution may be the result of re-melting of heterogeneous hot spot mantle that was partially depleted during the earlier, age progressive stages. The oldest Louisville seamounts were constructed close to the extinct Osbourn Trough spreading center, located north of the chain, but age-progressive lavas from these older seamounts are not significantly different to lavas from younger seamounts. This may indicate that spreading at this fossil ridge ceased several tens of millions of years before the oldest Louisville seamounts were constructed. Large fracture zones apparently had no significant effects on the composition of Louisville magmatism. However, lavas from the central part of the Louisville Seamount Chain, where volcanoes are smaller and more widely spaced, tend to have more variable and more enriched compositions. We suggest this may reflect smaller degrees of melting resulting from greater lithosphere thickness, and hence a shorter melting column for this section of the Louisville Seamounts.

Collaboration


Dive into the Marcel Regelous's collaboration.

Top Co-Authors

Avatar

Karsten M. Haase

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christoph Beier

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp A. Brandl

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Krumm

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. I. Wendt

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge