Marcel Salanoubat
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcel Salanoubat.
Nature | 2004
Olivier Jaillon; Jean-Marc Aury; Frédéric Brunet; Jean-Louis Petit; Nicole Stange-Thomann; Evan Mauceli; Laurence Bouneau; Cécile Fischer; Catherine Ozouf-Costaz; Alain Bernot; Sophie Nicaud; David B. Jaffe; Sheila Fisher; Georges Lutfalla; Carole Dossat; Béatrice Segurens; Corinne Dasilva; Marcel Salanoubat; Michael Levy; Nathalie Boudet; Sergi Castellano; Véronique Anthouard; Claire Jubin; Vanina Castelli; Michael Katinka; Benoit Vacherie; Christian Biémont; Zineb Skalli; Laurence Cattolico; Julie Poulain
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Alexis Dufresne; Marcel Salanoubat; Frédéric Partensky; François Artiguenave; Ilka M. Axmann; Valérie Barbe; Simone Duprat; Michael Y. Galperin; Eugene V. Koonin; Florence Le Gall; Kira S. Makarova; Martin Ostrowski; Sophie Oztas; Catherine Robert; Igor B. Rogozin; David J. Scanlan; Nicole Tandeau de Marsac; Jean Weissenbach; Patrick Wincker; Yuri I. Wolf; Wolfgang R. Hess
Prochlorococcus marinus, the dominant photosynthetic organism in the ocean, is found in two main ecological forms: high-light-adapted genotypes in the upper part of the water column and low-light-adapted genotypes at the bottom of the illuminated layer. P. marinus SS120, the complete genome sequence reported here, is an extremely low-light-adapted form. The genome of P. marinus SS120 is composed of a single circular chromosome of 1,751,080 bp with an average G+C content of 36.4%. It contains 1,884 predicted protein-coding genes with an average size of 825 bp, a single rRNA operon, and 40 tRNA genes. Together with the 1.66-Mbp genome of P. marinus MED4, the genome of P. marinus SS120 is one of the two smallest genomes of a photosynthetic organism known to date. It lacks many genes that are involved in photosynthesis, DNA repair, solute uptake, intermediary metabolism, motility, phototaxis, and other functions that are conserved among other cyanobacteria. Systems of signal transduction and environmental stress response show a particularly drastic reduction in the number of components, even taking into account the small size of the SS120 genome. In contrast, housekeeping genes, which encode enzymes of amino acid, nucleotide, cofactor, and cell wall biosynthesis, are all present. Because of its remarkable compactness, the genome of P. marinus SS120 might approximate the minimal gene complement of a photosynthetic organism.
Molecular Systems Biology | 2008
Véronique de Berardinis; David Vallenet; Vanina Castelli; Marielle Besnard; Agnès Pinet; Corinne Cruaud; Sumitta Samair; Christophe Lechaplais; Gabor Gyapay; Céline Richez; Maxime Durot; Annett Kreimeyer; François Le Fèvre; Vincent Schächter; Valérie Pezo; Volker Döring; Claude Scarpelli; Claudine Médigue; Georges N. Cohen; Philippe Marlière; Marcel Salanoubat; Jean Weissenbach
We have constructed a collection of single‐gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2‐3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches.
BMC Biology | 2005
Nathalie Choisne; Nadia Demange; Gisela Orjeda; Sylvie Samain; Angélique D'Hont; Laurence Cattolico; Eric Pelletier; Arnaud Couloux; Béatrice Segurens; Patrick Wincker; Claude Scarpelli; Jean Weissenbach; Marcel Salanoubat; Nagendra K. Singh; T. Mohapatra; T. R. Sharma; Kishor Gaikwad; Archana Singh; Vivek Dalal; Subodh K. Srivastava; Anupam Dixit; Ajit K. Pal; Irfan Ahmad Ghazi; Mahavir Yadav; Awadhesh Pandit; Ashutosh Bhargava; K. Sureshbabu; Rekha Dixit; Harvinder Singh; Suresh C. Swain
Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.BackgroundRice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals.ResultsWe have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes.ConclusionBecause the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.
Journal of Biological Chemistry | 2007
Annett Kreimeyer; Alain Perret; Christophe Lechaplais; David Vallenet; Claudine Médigue; Marcel Salanoubat; Jean Weissenbach
Although the proteins of the lysine fermentation pathway were biochemically characterized more than thirty years ago, the genes encoding the proteins that catalyze three steps of this pathway are still unknown. We combined gene context, similarity of enzymatic mechanisms, and molecular weight comparisons with known proteins to select candidate genes for these three orphan proteins. We used a wastewater metagenomic collection of sequences to find and characterize the missing genes of the lysine fermentation pathway. After recombinant protein production and purification following cloning in Escherichia coli, we demonstrated that these genes (named kdd, kce, and kal) encode a l-erythro-3,5-diaminohexanoate dehydrogenase, a 3-keto-5-aminohexanoate cleavage enzyme, and a 3-aminobutyryl-CoA ammonia lyase, respectively. Because all of the genes of the pathway are now identified, we used this breakthrough to detect lysine-fermenting bacteria in sequenced genomes. We identified twelve bacteria that possess these genes and thus are expected to ferment lysine, and their gene organization is discussed.
BMC Systems Biology | 2008
Maxime Durot; François Le Fèvre; Véronique de Berardinis; Annett Kreimeyer; David Vallenet; Cyril Combe; Serge Smidtas; Marcel Salanoubat; Jean Weissenbach; Vincent Schächter
BackgroundGenome-scale metabolic models are powerful tools to study global properties of metabolic networks. They provide a way to integrate various types of biological information in a single framework, providing a structured representation of available knowledge on the metabolism of the respective species.ResultsWe reconstructed a constraint-based metabolic model of Acinetobacter baylyi ADP1, a soil bacterium of interest for environmental and biotechnological applications with large-spectrum biodegradation capabilities. Following initial reconstruction from genome annotation and the literature, we iteratively refined the model by comparing its predictions with the results of large-scale experiments: (1) high-throughput growth phenotypes of the wild-type strain on 190 distinct environments, (2) genome-wide gene essentialities from a knockout mutant library, and (3) large-scale growth phenotypes of all mutant strains on 8 minimal media. Out of 1412 predictions, 1262 were initially consistent with our experimental observations. Inconsistencies were systematically examined, leading in 65 cases to model corrections. The predictions of the final version of the model, which included three rounds of refinements, are consistent with the experimental results for (1) 91% of the wild-type growth phenotypes, (2) 94% of the gene essentiality results, and (3) 94% of the mutant growth phenotypes. To facilitate the exploitation of the metabolic model, we provide a web interface allowing online predictions and visualization of results on metabolic maps.ConclusionThe iterative reconstruction procedure led to significant model improvements, showing that genome-wide mutant phenotypes on several media can significantly facilitate the transition from genome annotation to a high-quality model.
Nature Chemical Biology | 2014
Karine Bastard; Adam Alexander Thil Smith; Carine Vergne-Vaxelaire; Alain Perret; Anne Zaparucha; Raquel C. de Melo-Minardi; Aline Mariage; Magali Boutard; Adrien Debard; Christophe Lechaplais; Christine Pellé; Virginie Pellouin; Nadia Perchat; Jean-Louis Petit; Annett Kreimeyer; Claudine Médigue; Jean Weissenbach; François Artiguenave; Véronique de Berardinis; David Vallenet; Marcel Salanoubat
Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Here, we describe an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families of unknown or little known function. This approach relies on the definition of a generic reaction conserved within the family, high-throughput enzymatic screening on representatives, structural and modeling investigations and analysis of genomic and metabolic context. As a proof of principle, we investigated the DUF849 Pfam family and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as β-keto acid cleavage enzymes. We propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape.
Journal of Bacteriology | 2009
Nuria Fonknechten; Alain Perret; Nadia Perchat; Sabine Tricot; Christophe Lechaplais; David Vallenet; Carine Vergne; Anne Zaparucha; Denis Le Paslier; Jean Weissenbach; Marcel Salanoubat
For the ornithine fermentation pathway, described more than 70 years ago, genetic and biochemical information are still incomplete. We present here the experimental identification of the last four missing genes of this metabolic pathway. They encode L-ornithine racemase, (2R,4S)-2,4-diaminopentanoate dehydrogenase, and the two subunits of 2-amino-4-ketopentanoate thiolase. While described only for the Clostridiaceae to date, this pathway is shown to be more widespread.
Molecular Systems Biology | 2012
Takuji Yamada; Alison S. Waller; Jeroen Raes; Aleksej Zelezniak; Nadia Perchat; Alain Perret; Marcel Salanoubat; Kiran Raosaheb Patil; Jean Weissenbach; Peer Bork
Despite the current wealth of sequencing data, one‐third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently are not amenable to modern systemic analyses. As 555 of these orphan enzymes have metabolic pathway neighbours, we developed a global framework that utilizes the pathway and (meta)genomic neighbour information to assign candidate sequences to orphan enzymes. For 131 orphan enzymes (37% of those for which (meta)genomic neighbours are available), we associate sequences to them using scoring parameters with an estimated accuracy of 70%, implying functional annotation of 16 345 gene sequences in numerous (meta)genomes. As a case in point, two of these candidate sequences were experimentally validated to encode the predicted activity. In addition, we augmented the currently available genome‐scale metabolic models with these new sequence–function associations and were able to expand the models by on average 8%, with a considerable change in the flux connectivity patterns and improved essentiality prediction.
Journal of Biological Chemistry | 2008
Asadollah Aghaie; Christophe Lechaplais; Peggy Sirven; Sabine Tricot; Marielle Besnard-Gonnet; Delphine Muselet; Véronique de Berardinis; Annett Kreimeyer; Gabor Gyapay; Marcel Salanoubat; Alain Perret
Although the d-glucarate degradation pathway is well characterized in Escherichia coli, genetic and biochemical information concerning the alternative pathway proposed in Pseudomonas species and Bacillus subtilis remains incomplete. Acinetobacter baylyi ADP1 is a Gram-negative soil bacterium possessing the alternative pathway and able to grow using d-glucarate as the only carbon source. Based on the annotation of its sequenced genome (1), we have constructed a complete collection of singlegene deletion mutants (2). High throughput profiling for growth on a minimal medium containing d-glucarate as the only carbon source for ∼2450 mutants led to the identification of the genes involved in d-glucarate degradation. Protein purification after recombinant production in E. coli allowed us to reconstitute the enzymatic pathway in vitro. We describe here the kinetic characterization of d-glucarate dehydratase, d-5-keto-4-deoxyglucarate dehydratase, and of cooperative α-ketoglutarate semialdehyde dehydrogenase. Transcription and expression analyses of the genes involved in d-glucarate metabolism within a single organism made it possible to access information regarding the regulation of this pathway for the first time.