Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel Wiermer is active.

Publication


Featured researches published by Marcel Wiermer.


Science | 2005

Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis

Volker Lipka; Jan Dittgen; Paweł Bednarek; Riyaz A. Bhat; Marcel Wiermer; Mónica Stein; Jörn Landtag; Wolfgang Brandt; Sabine Rosahl; Dierk Scheel; Francisco Llorente; Antonio Molina; Jane E. Parker; Shauna Somerville; Paul Schulze-Lefert

Nonhost resistance describes the immunity of an entire plant species against nonadapted pathogen species. We report that Arabidopsis PEN2 restricts pathogen entry of two ascomycete powdery mildew fungi that in nature colonize grass and pea species. The PEN2 glycosyl hydrolase localizes to peroxisomes and acts as a component of an inducible preinvasion resistance mechanism. Postinvasion fungal growth is blocked by a separate resistance layer requiring the EDS1-PAD4-SAG101 signaling complex, which is known to function in basal and resistance (R) gene–triggered immunity. Concurrent impairment of pre- and postinvasion resistance renders Arabidopsis a host for both nonadapted fungi.


The Plant Cell | 2005

Arabidopsis SENESCENCE-ASSOCIATED GENE101 Stabilizes and Signals within an ENHANCED DISEASE SUSCEPTIBILITY1 Complex in Plant Innate Immunity

Bart J. Feys; Marcel Wiermer; Riyaz A. Bhat; Lisa J. Moisan; Nieves Medina-Escobar; Christina Neu; Adriana Cabral; Jane E. Parker

Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1–SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1–PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.


The Plant Cell | 2009

Nuclear Pore Complex Component MOS7/Nup88 Is Required for Innate Immunity and Nuclear Accumulation of Defense Regulators in Arabidopsis

Yu Ti Cheng; Hugo Germain; Marcel Wiermer; Dongling Bi; Fang Xu; Ana V. García; Lennart Wirthmueller; Charles Després; Jane E. Parker; Yuelin Zhang; Xin Li

Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein–mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-κB transcription factors, resulting in nuclear accumulation of NF-κB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.


PLOS Pathogens | 2010

Balanced Nuclear and Cytoplasmic Activities of EDS1 Are Required for a Complete Plant Innate Immune Response

Ana V. García; Servane Blanvillain-Baufumé; Robin P. Huibers; Marcel Wiermer; Guangyong Li; Enrico Gobbato; Steffen Rietz; Jane E. Parker

An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor

Zhaohai Zhu; Fang Xu; Yaxi Zhang; Yu Ti Cheng; Marcel Wiermer; Xin Li; Yuelin Zhang

In both plants and animals, nucleotide-binding (NB) domain and leucine-rich repeat (LRR)-containing proteins (NLR) function as sensors of pathogen-derived molecules and trigger immune responses. Although NLR resistance (R) proteins were first reported as plant immune receptors more than 15 years ago, how these proteins activate downstream defense responses is still unclear. Here we report that the Toll-like/interleukin-1 receptor (TIR)-NB-LRR R protein, suppressor of npr1-1, constitutive 1 (SNC1) functions through its associated protein, Topless-related 1 (TPR1). Knocking out TPR1 and its close homologs compromises immunity mediated by SNC1 and several other TIR-NB-LRR–type R proteins, whereas overexpression of TPR1 constitutively activates SNC1-mediated immune responses. TPR1 functions as a transcriptional corepressor and associates with histone deacetylase 19 in vivo. Among the target genes of TPR1 are Defense no Death 1 (DND1) and Defense no Death 2 (DND2), two known negative regulators of immunity that are repressed during pathogen infection, suggesting that TPR1 activates R protein-mediated immune responses through repression of negative regulators.


Plant Journal | 2012

The cyclin L homolog MOS12 and the MOS4‐associated complex are required for the proper splicing of plant resistance genes

Fang Xu; Shaohua Xu; Marcel Wiermer; Yuelin Zhang; Xin Li

Plant resistance (R) proteins protect cells from infections through recognizing effector molecules produced by pathogens and initiating downstream defense cascades. To mount proper immune responses, the expression of R genes has to be tightly controlled transcriptionally and post-transcriptionally. Intriguingly, alternative splicing of the R genes of the nucleotide binding leucine-rich repeat (NB-LRR) type was observed in different plant species, but its regulatory mechanism remains elusive. Here, we report the positional cloning and functional analysis of modifier of snc1,12 (mos12-1), a partial loss-of-function mutant that can suppress the constitutive defense responses conferred by the gain-of-function R gene mutant suppressor of npr1-1 constitutive 1 (snc1). MOS12 encodes an arginine-rich protein that is homologous to human cyclin L. A null allele of mos12-2 is lethal, suggesting it has a vital role in plant growth and development. MOS12 localizes to the nucleus, and the mos12-1 mutation results in altered splicing patterns of SNC1 and RPS4, indicating that MOS12 is required for the proper splicing of target R genes. MOS12 co-immunoprecipitates with MOS4, indicating that MOS12 associates with the MOS4-associated complex (MAC). Accordingly, splicing patterns of SNC1 and RPS4 are changed in most MAC core mutants. Our study highlights the contribution of MOS12 and the MAC in the alternative splicing of R genes, providing regulatory details on how alternative splicing is used to fine-tune R gene expression in plant immunity.


Plant Journal | 2012

Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense.

Marcel Wiermer; Yu Ti Cheng; Julia Imkampe; Meilan Li; Dongmei Wang; Volker Lipka; Xin Li

In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de-regulated Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeat (TNL)-type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107-160 nuclear pore sub-complex, and implicated in immunity-related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107-160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL-type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil-type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL-triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1-conditioned resistance pathways in Arabidopsis.


Cellular Microbiology | 2007

Should I stay or should I go? Nucleocytoplasmic trafficking in plant innate immunity

Marcel Wiermer; Kristoffer Palma; Yuelin Zhang; Xin Li

Communication between the cytoplasm and the nucleus is a fundamental feature of eukaryotic cells. Bidirectional transport of macromolecules across the nuclear envelope is typically mediated by receptors and occurs exclusively through nuclear pore complexes (NPCs). The components and molecular mechanisms regulating nucleocytoplasmic trafficking and signalling processes are well studied in animals and yeast but are poorly understood in plants. Current work shows that components of the NPC and the nuclear import and export machinery play essential roles in plant innate immunity. Translocation of defence regulators and Resistance (R) proteins between the cytoplasm and the nucleus are recently uncovered aspects of plant defence responses against pathogens. Future studies will reveal more details on the spatial and temporal dynamics and regulation of this process.


PLOS Pathogens | 2013

The Salmonella Type III Effector SspH2 Specifically Exploits the NLR Co-chaperone Activity of SGT1 to Subvert Immunity

Amit P. Bhavsar; Nat F. Brown; Jan Stoepel; Marcel Wiermer; Dale D. O. Martin; Karolynn J. Hsu; Koshi Imami; Colin Ross; Michael R. Hayden; Leonard J. Foster; Xin Li; Phil Hieter; B. Brett Finlay

To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL) effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR) model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.


Plant Physiology | 2015

Two Activities of Long-Chain Acyl-Coenzyme A Synthetase Are Involved in Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in Arabidopsis

Dirk Jessen; Charlotte Roth; Marcel Wiermer; Martin Fulda

Lipid reassembly is a key step in the transfer of cytosolic lipid precursors to the plastid. In plants, fatty acids are synthesized within the plastid and need to be distributed to the different sites of lipid biosynthesis within the cell. Free fatty acids released from the plastid need to be converted to their corresponding coenzyme A thioesters to become metabolically available. This activation is mediated by long-chain acyl-coenzyme A synthetases (LACSs), which are encoded by a family of nine genes in Arabidopsis (Arabidopsis thaliana). So far, it has remained unclear which of the individual LACS activities are involved in making plastid-derived fatty acids available to cytoplasmic glycerolipid biosynthesis. Because of its unique localization at the outer envelope of plastids, LACS9 was regarded as a candidate for linking plastidial fatty export and cytoplasmic use. However, data presented in this study show that LACS9 is involved in fatty acid import into the plastid. The analyses of mutant lines revealed strongly overlapping functions of LACS4 and LACS9 in lipid trafficking from the endoplasmic reticulum to the plastid. In vivo labeling experiments with lacs4 lacs9 double mutants suggest strongly reduced synthesis of endoplasmic reticulum-derived lipid precursors, which are required for the biosynthesis of glycolipids in the plastids. In conjunction with this defect, double-mutant plants accumulate significant amounts of linoleic acid in leaf tissue.

Collaboration


Dive into the Marcel Wiermer's collaboration.

Top Co-Authors

Avatar

Xin Li

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Charlotte Roth

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Lipka

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Yuelin Zhang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yu Ti Cheng

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Xu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Lüdke

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge