Marcela Cucher
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcela Cucher.
Nature | 2013
Isheng J. Tsai; Magdalena Zarowiecki; Nancy Holroyd; Alejandro Garciarrubio; Alejandro Sanchez-Flores; Karen Brooks; Alan Tracey; Raúl J. Bobes; Gladis Fragoso; Edda Sciutto; Martin Aslett; Helen Beasley; Hayley M. Bennett; Jianping Cai; Federico Camicia; Richard M. Clark; Marcela Cucher; Nishadi De Silva; Tim A. Day; Peter Deplazes; Karel Estrada; Cecilia Fernández; Peter W. H. Holland; Junling Hou; Songnian Hu; Thomas Huckvale; Stacy S. Hung; Laura Kamenetzky; Jacqueline A. Keane; Ferenc Kiss
Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.
International Journal for Parasitology | 2011
Marcela Cucher; Laura Prada; G. Mourglia-Ettlin; S. Dematteis; Federico Camicia; Sebastián Asurmendi; Mara Rosenzvit
The aetiological agent of cystic hydatid disease, the platyhelminth parasite Echinococcus granulosus, undergoes a series of metamorphic events during its complex life cycle. One of its developmental stages, the protoscolex, shows a remarkable degree of heterogeneous morphogenesis, being able to develop either into the vesicular or strobilar direction. Another level of complexity is added by the existence of genotypes or strains that differ in the range of intermediate hosts where they can develop and form fertile cysts. These features make E. granulosus an interesting model for developmental studies. Hence, we focused on the study of the regulation of gene expression by microRNAs (miRNAs), one of the key mechanisms that control development in metazoans and plants and which has not been analysed in E. granulosus yet. In this study, we cloned 38 distinct miRNAs, including four candidate new miRNAs that seem to be specific to Echinococcus spp. Thirty-four cloned sequences were orthologous to miRNAs already described in other organisms and were grouped in 16 metazoan miRNA families, some of them known for their role in the development of other organisms. The expression of some of the cloned miRNAs differs according to the parasite life cycle stage analysed, showing differential developmental expression. We did not detect differences in the expression of the analysed miRNAs between protoscoleces of two parasite genotypes. This work sets the scene for the study of gene regulation mediated by miRNAs in E. granulosus and provides a new approach to study the molecules involved in its developmental plasticity and intermediate host specificity. Understanding the developmental processes of E. granulosus may help to find new strategies for the control of cystic hydatid disease, caused by the metacestode stage of the parasite.
PLOS Neglected Tropical Diseases | 2013
Ghalia Boubaker; Natalia Macchiaroli; Laura Prada; Marcela Cucher; Mara Rosenzvit; Iskender Ziadinov; Peter Deplazes; Urmas Saarma; Hamouda Babba; Bruno Gottstein; Markus Spiliotis
Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1–G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1–G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6–G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.
Tropical Medicine & International Health | 2016
Marcela Cucher; Natalia Macchiaroli; Germán Baldi; Federico Camicia; Laura Prada; Lucas Maldonado; Héctor Gabriel Avila; Adolfo Fox; Ariana M. Gutierrez; Perla Negro; Raúl López; Oscar Jensen; Mara Rosenzvit; Laura Kamenetzky
To systematically review publications on Echinococcus granulosus sensu lato species/genotypes reported in domestic intermediate and definitive hosts in South America and in human cases worldwide, taking into account those articles where DNA sequencing was performed; and to analyse the density of each type of livestock that can act as intermediate host, and features of medical importance such as cyst organ location.
Parasites & Vectors | 2015
Natalia Macchiaroli; Marcela Cucher; Magdalena Zarowiecki; Lucas Maldonado; Laura Kamenetzky; Mara Rosenzvit
BackgroundmicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. The particular developmental and metabolic characteristics of cestode parasites highlight the importance of studying miRNA gene regulation in these organisms. Here, we perform a comprehensive analysis of miRNAs in the parasitic cestode Echinococcus canadensis G7, one of the causative agents of the neglected zoonotic disease cystic echinococcosis.MethodsSmall RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. For miRNA prediction, miRDeep2 core algorithm was used. The output list of candidate precursors was manually curated to generate a high confidence set of miRNAs. Differential expression analysis of miRNAs between stages or species was estimated with DESeq. Expression levels of selected miRNAs were validated using poly-A RT-qPCR.ResultsIn this study we used a high-throughput approach and found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed highly regulated miRNAs between life cycle stages, suggesting a role in maintaining the features of each developmental stage or in the regulation of developmental timing. In this work we characterize conserved and novel Echinococcus miRNAs which represent 30 unique miRNA families. Here we confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism.ConclusionsWe performed the first in-depth study profiling of small RNAs in the zoonotic parasite E. canadensis G7. We found that miRNAs are the preponderant small RNA silencing molecules, suggesting that these small RNAs could be an essential mechanism of gene regulation in this species. We also identified both parasite specific and divergent miRNAs which are potential biomarkers of infection. This study will provide valuable information for better understanding of the complex biology of this parasite and could help to find new potential targets for therapy and/or diagnosis.
International Journal for Parasitology | 2015
Marcela Cucher; Natalia Macchiaroli; Laura Kamenetzky; Lucas Maldonado; Klaus Brehm; Mara Rosenzvit
Echinococcosis is a worldwide zoonosis of great public health concern, considered a neglected disease by the World Health Organisation. The cestode parasites Echinococcus granulosus sensu lato (s. l.) and Echinococcus multilocularis are the main aetiological agents. In the intermediate host, these parasites display particular developmental traits that lead to different patterns of disease progression. In an attempt to understand the causes of these differences, we focused on the analysis of microRNAs (miRNAs), small non-coding regulatory RNAs with major roles in development of animals and plants. In this work, we analysed the small RNA expression pattern of the metacestode, the stage of sanitary relevance, and provide a detailed description of Echinococcus miRNAs. Using high-throughput small RNA sequencing, we believe that we have carried out the first experimental identification of miRNAs in E. multilocularis and have expanded the Echinococcus miRNA catalogue to 38 miRNA genes, including one miRNA only present in E. granulosus s. l. Our findings show that although both species share the top five highest expressed miRNAs, 13 are differentially expressed, which could be related to developmental differences. We also provide evidence that uridylation is the main miRNA processing mechanism in Echinococcus spp. These results provide detailed information on Echinococcus miRNAs, which is the first step in understanding their role in parasite biology and disease establishment and/or progression, and their future potential use as drug or diagnostic targets.
Veterinary Parasitology | 2013
Marcela Cucher; G. Mourglia-Ettlin; Laura Prada; H. Costa; Laura Kamenetzky; C. Poncini; S. Dematteis; Mara Rosenzvit
Echinococcus granulosus, the aetiological agent of cystic hydatid disease, exists as a series of strains or genotypes which differ in biological features. Pig strain (G7 genotype) has been shown to differ from sheep strain (G1 genotype) in phenotypical characters such as intermediate host range, geographical distribution and rate of development of the adult worm. Since in vivo studies of different parasite genotypes can provide insights into host-parasite relationship we analysed for the first time the behaviour of E. granulosus G7 genotype protoscoleces in the murine experimental model. Our results show that G7 protoscoleces were unable to establish a regular infection in mice in contrast to G1 protoscoleces which developed intraperitoneal hydatid cysts. This inability was observed in co-infection experiments, i.e. even in the presence of a controlled immune response that allows G1 genotype protoscoleces establishment. In addition, the implantation of in vitro obtained E. granulosus G7 genotype microcysts resulted in a low percentage of hydatid cysts establishment. These results show a difference in the biological ability of both E. granulosus strains to develop secondary hydatid cysts in mice. We suggest that the comparison of infective and non infective genotypes of E. granulosus in the experimental host can be regarded as a new model to study the mechanisms of infection of Echinococcus spp. This knowledge could provide helpful information for the development of therapies, drugs and/or vaccines against cystic hydatid disease.
International Journal for Parasitology | 2017
María Eugenia Ancarola; Antonio Marcilla; Michaela Herz; Natalia Macchiaroli; Matías Pérez; Sebastián Asurmendi; Klaus Brehm; Carolina V. Poncini; Mara Rosenzvit; Marcela Cucher
Intercellular communication is crucial in multiple aspects of cell biology. This interaction can be mediated by several mechanisms including extracellular vesicle (EV) transfer. EV secretion by parasites has been reported in protozoans, trematodes and nematodes. Here we report that this mechanism is present in three different species of cestodes, Taenia crassiceps, Mesocestoides corti and Echinococcus multilocularis. To confirm this we determined, in vitro, the presence of EVs in culture supernatants by transmission electron microscopy. Interestingly, while T. crassiceps and M. corti metacestodes secrete membranous structures into the culture media, similar vesicles were observed in the interface of the germinal and laminated layers of E. multilocularis metacestodes and were hardly detected in culture supernatants. We then determined the protein cargo in the EV-enriched secreted fractions of T. crassiceps and M. corti conditioned media by LC-MS/MS. Among the identified proteins, eukaryotic vesicle-enriched proteins were identified as expected, but also proteins used for cestode disease diagnosis, proteins related to neurotransmission, lipid binding proteins as well as host immunoglobulins and complement factors. Finally, we confirmed by capillary electrophoresis the presence of intravesicular RNA for both parasites and detected microRNAs by reverse transcription-PCR. This is the first report of EV secretion in cestode parasites and of an RNA secretion mechanism. These findings will provide valuable data not only for basic cestode biology but also for the rational search for new diagnostic targets.
International Journal for Parasitology | 2013
Federico Camicia; Michaela Herz; Laura Prada; Laura Kamenetzky; Sergio H. Simonetta; Marcela Cucher; Javier Ignacio Bianchi; Cecilia Fernández; Klaus Brehm; Mara Rosenzvit
Serotonin (5-hydroxytryptamine, 5-HT) is an important neuroactive and morphogenetic molecule in several metazoan phyla, including flatworms. Serotoninergic nervous system studies are incomplete and 5-HT function/s are unknown in Echinococcus spp., the flatworm parasites that cause hydatid disease. In the present work, we searched for genes of the serotoninergic pathway and performed immunocytochemical and functional analyses of 5-HT in Echinococcus spp. Bioinformatic analysis using the recently available Echinococcus multilocularis and Echinococcus granulosus genomes suggests the presence of genes encoding enzymes, receptors and transporters participating in 5-HT synthesis, sensing and transport in these parasites. However, some components of the pathway could not be identified, suggesting loss or divergence of parasite homologous genes. The serotoninergic neuroanatomy study performed by confocal scanning laser microscopy on different E. granulosus stages showed an increasing level of complexity when the protoscolex develops towards the adult stage and a progressive diminution when the parasite develops towards the metacestode stage. The role of 5-HT as a neurotransmitter in E. granulosus was evaluated by determining the effect of this substance on protoscolex motility. The addition of 5-HT to protoscoleces induced a significant increase in motility for short time periods. Preincubation with 100 μM citalopram, a known 5-HT transporter inhibitor, abolished the 5-HT-induced increase in motility, indicating that the effect could be mediated by a 5-HT transporter. Incubation of protoscoleces with 5-HT for time periods of several days induced a progressive differentiation towards the metacestode stage. The results indicate that 5-HT could have nervous and prenervous roles during Echinococcus spp. development. Taking into account the important roles of 5-HT in parasite biology and the divergence of 5-HT pathway genes with respect to human counterparts, the serotoninergic system could be considered as an amenable drug target against hydatid disease.
BMC Genomics | 2017
Lucas Maldonado; Juliana G. Assis; Flávio Marcos Gomes Araújo; Anna Christina de Matos Salim; Natalia Macchiaroli; Marcela Cucher; Federico Camicia; Adolfo Fox; Mara Rosenzvit; Guilherme Oliveira; Laura Kamenetzky
BackgroundThe parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools.ResultsWe sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus.ConclusionsThis is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.