Marcela Fernandes Silva
Universidade Estadual de Maringá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcela Fernandes Silva.
Journal of Applied Physics | 2013
Marcela Fernandes Silva; Luiz A. S. de Oliveira; Mariani A. Ciciliati; Lais T. Silva; Bruna da Silva Pereira; Ana Adelina Winkler Hechenleitner; Daniela Martins Fernandes de Oliveira; K.R. Pirota; Flávio F. Ivashita; A. Paesano; J. Martin Pastor; J. Iñaki Pérez-Landazábal; Edgardo Alfonso Gómez Pineda
Fe2O3 nanoparticles with sizes ranging from 15 to 53 nm were synthesized by a modified sol-gel method. Maghemite particles as well as particles with admixture of maghemite and hematite were obtained and characterized by XRD, FTIR, UV-Vis photoacoustic and Mossbauer spectroscopy, TEM, and magnetic measurements. The size and hematite/maghemite ratio of the nanoparticles were controlled by changing the Fe:PVA (poly (vinyl alcohol)) monomeric unit ratio used in the medium reaction (1:6, 1:12, 1:18, and 1:24). The average size of the nanoparticles decreases, and the maghemite content increases with increasing PVA amount until 1:18 ratio. The maghemite and hematite nanoparticles showed cubic and hexagonal morphology, respectively. Direct band gap energy were 1.77 and 1.91 eV for A6 and A18 samples. Zero-field-cooling–field-cooling curves show that samples present superparamagnetic behavior. Maghemite-hematite phase transition and hematite Neel transition were observed near 700 K and 1015 K, respectively. Magnet...
European Journal of Pharmaceutical Sciences | 2013
Marcela Fernandes Silva; Ana Adelina Winkler Hechenleitner; Daniela Martins Fernandes de Oliveira; Maite Agüeros; Rebeca Penalva; Juan M. Irache; Edgardo Alfonso Gómez Pineda
Magnetic nanoparticles have been proposed as interesting tools for biomedical purposes. One of their promising utilization is the MRI in which magnetic substances like maghemite are used in a nanometric size and encapsulated within locally biodegradable nanoparticles. In this work, maghemite has been obtained by a modified sol-gel method and encapsulated in polymer-based nanospheres. The nanospheres have been prepared by single emulsion evaporation method. The different parameters influencing the size, polydispersity index and zeta potential surface of nanospheres were investigated. The size of nanospheres was found to increase as the concentration of PLGA increases, but lower sizes were obtained for 3 min of sonication time and surfactant concentration of 1%. Zeta potential response of magnetic nanospheres towards pH variation was similar to that of maghemite-free nanospheres confirming the encapsulation of maghemite within PLGA nanospheres. The maghemite entrapment efficiency and maghemite content for nanospheres are 12% and 0.59% w/w respectively.
Asian Pacific Journal of Cancer Prevention | 2014
Marcela Fernandes Silva; Abdur Rehman Khokhar; Muhammad Zahid Qureshi; Ammad Ahmad Farooqi
Increasingly it is being realized that despite considerable advancements in therapeutic interventions related to treatment of cancer, satisfactory results are still difficult to achieve. Rapidly accumulating evidence has started to shed light on the fact that cancer cells escape from death via constitutive activation of pro-survival signaling cascades. Cell biology and genetics have extensively enhanced our current understanding of the molecular mechanisms that underlie loss of apoptosis in cancer cells. This review is focused on ionizing radiation mediated restoration of TRAIL mediated apoptosis as evidenced by cell culture and animal model studies. Moreover, we also bring to the limelight radiation induced expression of miRNAs and how miRNAs further control response of cancer cells to radiation.
Carbohydrate Polymers | 2015
Bruna da Silva Pereira; Marcela Fernandes Silva; Paulo Rodrigo Stival Bittencourt; Daniela Martins Fernandes de Oliveira; Edgardo Alfonso Gómez Pineda; Ana Adelina Winkler Hechenleitner
Silver nanoparticles (AgNPs) have attracted great attention due to its optical, electrical and thermal properties. Cellulosic supports for these nanoparticles are of particular interest because of its availability, flexibility and biocompatibility. In this work, AgNPs were synthesized using two cellulosic materials, cellophane (CP) and filter paper (FP), as matrix support. Cellulosic materials were immersed in an aqueous solution of silver nitrate containing polyvinylpyrrolidone (PVP) and then reduced with hydroxylamine. The obtained nanocomposites (CP-AgNPs and FP-AgNPs) were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (DRX) and scanning electron microscopy (SEM). AgNPs of near 15nm anchored onto cellulosic surfaces were detected. The thermal properties of these materials were investigated through thermogravimetry (TG). Their kinetic of thermal decomposition was studied by the Vyasovkin method of dynamic isoconvertion, which indicated a catalytic effect of AgNPs in the cellulose thermal decomposition reaction.
Materials Research-ibero-american Journal of Materials | 2015
Marcela Fernandes Silva; Ana Adelina Winkler Hechenleitner; Juan M. Irache; Adilson J. A. de Oliveira; Edgardo Alfonso Gómez Pineda
Poly(glycolide-co-lactide) (PLGA) nanospheres containing magnetic materials have been extensively studied because of its biomedical applications. Therefore, it is very important to know thermal properties of these materials in addition to other physical properties. Thermal degradation activation energy (Eα) of PLGA nanospheres with maghemite entrapment (PLGA-Mag), PLGA nanospheres (hollow spheres) (PLGA-H) obtained by an emulsion method and unprocessed PLGA (PLGA-R) were calculated by isoconversional Vyazovkin method based on data of TG analysis in order to evaluate modifications in thermal behavior caused by nanospheres obtainment process or by maghemite entrapment. Both hydrodynamic diameter in the range of 200-250 nm and polydispersity index lower than 0.3 are considered satisfactory. Thermal degradation of PLGA-R begins at higher temperatures than those of PLGA-H and PLGA-Mag, but processed samples presented increase in thermal stability, which was greater before processing by emulsion and in the presence of the magnetic materials. PLGA-Mag presents superparamagnetic behavior at room temperature.
Environmental Technology | 2017
Quelen Letícia Shimabuku; Flávia Sayuri Arakawa; Marcela Fernandes Silva; Priscila Ferri Coldebella; Tânia Ueda-Nakamura; Márcia Regina Fagundes-Klen; Rosangela Bergamasco
ABSTRACT Continuous flow experiments (450 mL min−1) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼105 UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.
Environmental Technology | 2016
Livia oliveira ruiz Moreti; Priscila Ferri Coldebella; Franciele Pereira Camacho; Milene Carvalho Bongiovani; Aloisio Henrique Pereira de Souza; Aline Kirie Gohara; Makoto Matsushita; Marcela Fernandes Silva; Letícia Nishi; Rosângela Bergamasco
ABSTRACT This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 104 cells mL–1. C/F/DAF tests were conducted using ‘Flotest’ equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L–1) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.
Environmental Technology | 2018
Carole Silveira; Quelen Letícia Shimabuku; Marcela Fernandes Silva; Rosângela Bergamasco
ABSTRACT In this work, we synthesized iron-oxide nanoparticles (NPsFeO) via a green synthesis method, using Moringa oleifera leaf extract, and evaluated its fluoride ion adsorption potential, comparing its efficiency with a commercially available adsorbent (activated carbon of bone [BGAC]). The adsorbent materials were characterized using X-ray diffraction, transmission, and scanning electronic microscopy, X-ray dispersive energy spectrometry, and N2 adsorption/desorption. The results showed that the maximum adsorption occurred in pH 7 for NPsFeO and pH 5 for the BGAC. Adsorption kinetic tests showed that the equilibrium was reached in 40 min for the NPsFeO, and 90 min for BGAC, with adsorption potential of 1.40 and 1.20 mg g−1, respectively. The model that best described the kinetic data was pseudo-first-order for NPsFeO and pseudo-second-order for BGAC. The Langmuir isotherm had a better fit for both adsorbents. The thermodynamic parameters indicated spontaneous and endothermic adsorption at 30°C, 40°C, and 50°C for BGAC, and at 30°C for NPsFeO. The regeneration process showed that it is possible to reuse NPsFeO three times in the fluoride ion adsorption process. As a result of its adsorption capabilities and the shortest contact time to achieve equilibrium, the NPsFeO is a highly promising material for fluoride ion removal.
Materia-rio De Janeiro | 2014
Marcela Fernandes Silva; Mariani A. Ciciliatti; Ana Adelina Winkler Hechenleitner; Rebeca Penalva; Maite Agüeros; Juan M. Irache; Adilson J. A. de Oliveira; Ammad Ahmad Farooqi; Edgardo Alfonso Gómez Pineda
Iron oxide nanoparticles (ION) have been studied for essential applications, like detection of biological constituents (virus, bacterials, cell, nucleic acids, protein, enzyme, etc.), magnetic bioseparation and clinic therapy and diagnosis (such as MRI magnetic fluid and hyperthermia). In this work, γ-Fe2O3 has been synthetized by a adapted sol-gel method and entraped in poly e-caprolactone (PCL) nanocapsules. The superparamagnetic nanocapsules have been formulated by double emulsion evaporation method. Some variables affecting the polydispersity index, zeta potential surface and size of nanocapsules were studied aiming optimize the formulation process of maghemite-loaded PCL nanocapsules. The following parameters were selected: sonication time, PCL concentration in organic phase, PVA concentration in external aqueous phase and maghemite/PCL weight ratio. Under these experimental conditions, the resulting nanocapsules displayed a mean size of about 346 nm and a maghemite content of about 7.5 µg/mg of nanocapsules and superparamagnetic behaviour at room temperature.
International Journal of Chemical Engineering | 2018
Karina Cardoso Valverde; Priscila Ferri Coldebella; Marcela Fernandes Silva; Letícia Nishi; Milene Carvalho Bongiovani; Rosângela Bergamasco
The present study aims to optimize the operational conditions in surface water coagulation/flocculation and sedimentation step, besides evaluating the association between seeds of Moringa oleifera Lam. (M. oleifera) and the synthetic coagulant aluminium sulphate for surface water treatment. The assays were performed in Jar Test using surface water from Pirapo River basin, Maringa, PR. It was observed that the operational conditions affect the coagulation/flocculation and sedimentation process efficiency. Optimal operational conditions for coagulants association are as follows: rapid mixing velocity (RMV) of 105 rpm, rapid mixing times (RMT) of 1 min, slow mixing velocity (SMV) of 30 rpm, slow mixing times (SMT) of 15 min, and sedimentation time (ST) of 15 min; this enables an improvement in the process, contributing to a reduction in synthetic coagulant aluminium sulphate demand of up to 30%, combined with an increase in M. oleifera dosage, not affecting the coagulation/flocculation and sedimentation process efficiency, considering the water pH range between 7 and 9.