Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcela Parra is active.

Publication


Featured researches published by Marcela Parra.


Molecular Microbiology | 2009

PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5

Abdallah M. Abdallah; Theo Verboom; Eveline M. Weerdenburg; Nicolaas C. Gey van Pittius; Phetole W. Mahasha; Connie R. Jimenez; Marcela Parra; Nathalie Cadieux; Michael J. Brennan; Ben J. Appelmelk; Wilbert Bitter

ESX‐5 is one of the five type VII secretion systems found in mycobacteria. These secretion systems are also known as ESAT‐6‐like secretion systems. Here, we have determined the secretome of ESX‐5 by a proteomic approach in two different strains of Mycobacterium marinum. Comparison of the secretion profile of wild‐type strains and their ESX‐5 mutants showed that a number of PE_PGRS and PPE‐MPTR proteins are dependent on ESX‐5 for transport. The PE and PPE protein families are unique to mycobacteria, are highly expanded in several pathogenic species, such as Mycobacterium tuberculosis and M. marinum, and certain family members are cell surface antigens associated with virulence. Using a monoclonal antibody directed against the PGRS domain we showed that nearly all PE_PGRS proteins that are recognized by this antibody are missing in the supernatant of ESX‐5 mutants. In addition to PE_PGRS and PPE proteins, the ESX‐5 secretion system is responsible for the secretion of a ESAT‐6‐like proteins. Together, these data show that ESX‐5 is probably a major secretion pathway for mycobacteria and that this system is responsible for the secretion of recently evolved PE_PGRS and PPE proteins.


Nature Medicine | 2004

Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin

Stéphane Temmerman; Kevin Pethe; Marcela Parra; Sylvie Alonso; Carine Rouanet; Thames Pickett; Annie Drowart; Anne Sophie Debrie; Giovanni Delogu; Franco D. Menozzi; Christian Sergheraert; Michael J. Brennan; Françoise Mascart; Camille Locht

Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.


Infection and Immunity | 2004

The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis

Marcela Parra; Thames Pickett; Giovanni Delogu; Veerabadran Dheenadhayalan; Anne Sophie Debrie; Camille Locht; Michael J. Brennan

ABSTRACT The heparin-binding hemagglutinin (HBHA) of Mycobacterium tuberculosis is a surface-expressed adhesin that can affect binding to host cells via a unique, methylated, carboxyl-terminal, lysine-, alanine-, and proline-rich repeat region. It has been implicated in extrapulmonary dissemination of M. tuberculosis from the lung following the initial infection of the host. To assess the vaccine potential of this protein, purified preparations of HBHA were emulsified in a dimethyldioctadecylammonium bromide-monophosphoryl lipid A adjuvant and tested for the ability to reduce M. tuberculosis infection in the mouse aerosol challenge model for tuberculosis. The HBHA-containing vaccine gave a ∼0.7-log reduction in CFU in both mouse lungs and spleens compared to adjuvant controls 28 days following challenge. Although a notable level of serum antibody to HBHA was elicited after three immunizations and the antibodies were able to bind to the surface of M. tuberculosis, passive immunization with monoclonal antibodies directed against HBHA did not protect in the challenge model. Compared to adjuvant controls, an elevated gamma interferon response was generated by splenic and lymph node-derived T cells from immunized mice in the presence of macrophages pulsed with purified HBHA or infected with live M. tuberculosis, suggesting that the effective immunity may be cell mediated. Efforts to construct effective recombinant HBHA vaccines in fast-growing Mycobacterium smegmatis have been unsuccessful so far, which indicates that distinctive posttranslational modifications present in the HBHA protein expressed by M. tuberculosis are critical for generating effective host immune responses. The vaccine studies described here demonstrate that HBHA is a promising new vaccine candidate for tuberculosis.


Microbiology | 2008

A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins

Prachi P. Singh; Marcela Parra; Nathalie Cadieux; Michael J. Brennan

Three Mycobacterium tuberculosis proteins, PE_PGRS 16 (Rv0977), PE_PGRS 26 (Rv1441c) and PE_PGRS 33 (Rv1818c), were expressed in Mycobacterium smegmatis and used to investigate the host response to members of this unique protein family. Following infection of macrophages with the recombinant M. smegmatis (Ms) strains, Ms-PE_PGRS 33 and Ms-PE_PGRS 26 were significantly more persistent (4.4 and 4.2 log c.f.u.) compared with Ms-PE_PGRS 16 (3.4 log c.f.u.) at day 6. Similarly, after infection of mice, Ms-PE_PGRS 33 and Ms-PE_PGRS 26 persisted at significantly higher levels in the spleen (3.5 and 3.2 log c.f.u.) and liver (3 and 2.6 log c.f.u.) compared with Ms-PE_PGRS 16 in the spleen (2 log c.f.u.) and in the liver (1 log c.f.u.) at day 10. Increased persistence of Ms-PE_PGRS 33 and Ms-PE_PGRS 26 was associated with cell death and increased release of lactate dehydrogenase in macrophage cultures as well as increased levels of IL-10 and, in contrast, lower levels of IL-12 and NO both in vitro and in mouse splenocytes. Conversely, poor survival of Ms-PE_PGRS 16 was associated both in macrophage cultures and in vivo with higher levels of NO and IL-12. All three PE_PGRS proteins were found to be cell-surface antigens, but immunization of mice with these PE_PGRS antigens as DNA vaccines showed no protection in a TB aerosol challenge model. In general, the results suggest that variable expression of different PE_PGRS proteins within host cells can affect either the fate of the mycobacterial pathogen or that of the host during infection and point to the importance of studying the expression and function of individual members of the PE_PGRS gene family of M. tuberculosis.


Clinical and Vaccine Immunology | 2009

Development of a Murine Mycobacterial Growth Inhibition Assay for Evaluating Vaccines against Mycobacterium tuberculosis

Marcela Parra; Amy Yang; JaeHyun Lim; Kristopher Kolibab; Steven C. Derrick; Nathalie Cadieux; Liyanage P. Perera; William R. Jacobs; Michael J. Brennan; Sheldon L. Morris

ABSTRACT The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immunization with five different types of TB vaccine preparations (Mycobacterium bovis BCG, an attenuated M. tuberculosis mutant strain, a DNA vaccine, a modified vaccinia virus strain Ankara [MVA] construct expressing four TB antigens, and a TB fusion protein formulated in adjuvant) can be detected. Importantly, the levels of vaccine-induced mycobacterial growth-inhibitory responses seen in vitro after 1 week of coculture correlated with the protective immune responses detected in vivo at 28 days postchallenge in a mouse model of pulmonary tuberculosis. In addition, similar patterns of cytokine expression were evoked at day 7 of the in vitro culture by immune splenocytes taken from animals immunized with the different TB vaccines. Among the consistently upregulated cytokines detected in the immune cocultures are gamma interferon, growth differentiation factor 15, interleukin-21 (IL-21), IL-27, and tumor necrosis factor alpha. Overall, we have developed an in vitro functional assay that may be useful for screening and comparing new TB vaccine preparations, investigating vaccine-induced protective mechanisms, and assessing manufacturing issues, including product potency and stability.


Microbiology | 2011

Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein.

Nathalie Cadieux; Marcela Parra; Hannah Cohen; Dragan Maric; Sheldon L. Morris; Michael J. Brennan

PE_PGRS33 is the most studied member of the unique PE family of mycobacterial proteins. These proteins are composed of a PE domain (Pro-Glu motif), a linker region and a PGRS domain (polymorphic GC-rich-repetitive sequence). Previous studies have shown that PE_PGRS33 is surface-exposed, constitutively expressed during growth and infection, involved in creating antigenic diversity, and able to induce death in transfected or infected eukaryotic cells. In this study, we showed that PE_PGRS33 co-localizes to the mitochondria of transfected cells, a phenomenon dependent on the linker region and the PGRS domain, but not the PE domain. Using different genetic fusions and chimeras, we also demonstrated a direct correlation between localization to the host mitochondria and the induction of cell death. Finally, although all constructs localizing to the mitochondria did induce apoptosis, only the wild-type PE_PGRS33 with its own PE domain also induced primary necrosis, indicating a potentially important role for the PE domain. Considering the importance of primary necrosis in Mycobacterium tuberculosis dissemination during natural infection, the PE_PGRS33 protein may play a crucial role in the pathogenesis of tuberculosis.


Infection and Immunity | 2000

Characterization of Conserved T- and B-Cell Epitopes in Plasmodium falciparum Major Merozoite Surface Protein 1

Marcela Parra; George Hui; Armead H. Johnson; Jay A. Berzofsky; Theodore Roberts; Isabella A. Quakyi; Diane W. Taylor

ABSTRACT Vaccines for P. falciparum will need to contain both T- and B-cell epitopes. Conserved epitopes are the most desirable, but they are often poorly immunogenic. The major merozoite surface protein 1 (MSP-1) is currently a leading vaccine candidate antigen. In this study, six peptides from conserved or partly conserved regions of MSP-1 were evaluated for immunogenicity in B10 congenic mice. Following immunization with the peptides, murine T cells were tested for the ability to proliferate in vitro and antibody responses to MSP-1 were evaluated in vivo. The results showed that one highly conserved sequence (MSP-1#1, VTHESYQELVKKLEALEDAV; located at amino acid positions 20 to 39) and one partly conserved sequence (MSP-1#23, GLFHKEKMILNEEEITTKGA; located at positions 44 to 63) contained both T- and B-cell epitopes. Immunization of mice with these peptides resulted in T-cell proliferation and enhanced production of antibody to MSP-1 upon exposure to merozoites. MSP-1#1 stimulated T-cell responses in three of the six strains of mice evaluated, whereas MSP-1#23 was immunogenic in only one strain. Immunization with the other four peptides resulted in T-cell responses to the peptides, but none of the resulting peptide-specific T cells recognized native MSP-1. These results demonstrate that two sequences located in the N terminus of MSP-1 can induce T- and B-cell responses following immunization in a murine model. Clearly, these sequences merit further consideration for inclusion in a vaccine for malaria.


Infection and Immunity | 2006

A PE Protein Expressed by Mycobacterium avium Is an Effective T-Cell Immunogen

Marcela Parra; Nathalie Cadieux; Thames Pickett; Veerabadran Dheenadhayalan; Michael J. Brennan

ABSTRACT Infection of mice with Mycobacterium avium or immunization with a novel PE gene expressed by M. avium (MaPE) showed that a dominant T-cell immune response was elicited. Immunization with an MaPE DNA vaccine protected mice against an aerosol challenge with Mycobacterium tuberculosis, suggesting that mycobacteria express PE antigens with cross-protective T-cell epitopes.


Vaccine | 2009

A practical in vitro growth inhibition assay for the evaluation of TB vaccines

Kristopher Kolibab; Marcela Parra; Amy Yang; Liyanage P. Perera; Steven C. Derrick; Sheldon L. Morris

New vaccines and novel immunization strategies are needed to improve the control of the global tuberculosis epidemic. To facilitate vaccine development, we have been creating in vitro mycobacterial intra-macrophage growth inhibition assays. Here we describe the development of an in vitro assay designed for BSL-2 laboratories which measures the capacity of vaccine-induced immune splenocytes to control the growth of isoniazid-resistant Mycobacterium bovis BCG (INH(r) BCG). The use of the INH(r) BCG as the infecting organism allows the discrimination of BCG bacilli used in murine vaccinations from BCG used in the in vitro assay. In this study, we showed that protective immune responses evoked by four different types of Mycobacterium tuberculosis vaccines [BCG, an ESAT6/Antigen 85B fusion protein formulated in DDA/MPL adjuvant, a DNA vaccine expressing the same fusion protein, and a TB Modified Vaccinia Ankara construct expressing four TB antigens (MVA-4TB)] were detected. Importantly, the levels of vaccine-induced protective immunity seen in the in vitro assay correlated with the results from in vivo protection studies in the mouse model of pulmonary tuberculosis. Furthermore, the growth inhibition data for the INH(r) BCG assay was similar to the previously reported results for a M. tuberculosis infection assay. The cytokine expression profiles at day 7 of the INH(r) BCG growth inhibition studies were also similar but not identical to the cytokine patterns detected in earlier M. tuberculosis co-culture assays. Overall, we have shown that a BSL-2 compatible in vitro growth inhibition assay using INH(r) BCG as the intra-macrophage target organism should be useful in developing and evaluating new TB immunization strategies.


PLOS ONE | 2013

Molecular analysis of non-specific protection against murine malaria induced by BCG vaccination.

Marcela Parra; Xia Liu; Steven C. Derrick; Amy Li Yang; Jinhua Tian; Kristopher Kolibab; Sanjai Kumar; Sheldon L. Morris

Although the effectiveness of BCG vaccination in preventing adult pulmonary tuberculosis (TB) has been highly variable, epidemiologic studies have suggested that BCG provides other general health benefits to vaccinees including reducing the impact of asthma, leprosy, and possibly malaria. To further evaluate whether BCG immunization protects against malarial parasitemia and to define molecular correlates of this non-specific immunity, mice were vaccinated with BCG and then challenged 2 months later with asexual blood stage Plasmodium yoelii 17XNL (PyNL) parasites. Following challenge with PyNL, significant decreases in parasitemia were observed in BCG vaccinated mice relative to naïve controls. To identify immune molecules that may be associated with the BCG-induced protection, gene expression was evaluated by RT-PCR in i) naïve controls, ii) BCG-vaccinated mice, iii) PyNL infected mice and iv) BCG vaccinated/PyNL infected mice at 0, 1, 5, and 9 days after the P. yoelii infection. The expression results showed that i) BCG immunization induces the expression of at least 18 genes including the anti-microbial molecules lactoferrin, eosinophil peroxidase, eosinophil major basic protein and the cathelicidin-related antimicrobial peptide (CRAMP); ii) an active PyNL infection suppresses the expression of important immune response molecules; and iii) the extent of PyNL-induced suppression of specific genes is reduced in BCG-vaccinated/PyNL infected mice. To validate the gene expression data, we demonstrated that pre-treatment of malaria parasites with lactoferrin or the cathelicidin LL-37 peptide decreases the level of PyNL parasitemias in mice. Overall, our study suggests that BCG vaccination induces the expression of non-specific immune molecules including antimicrobial peptides which may provide an overall benefit to vaccinees by limiting infections of unrelated pathogens such as Plasmodium parasites.

Collaboration


Dive into the Marcela Parra's collaboration.

Top Co-Authors

Avatar

Michael J. Brennan

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Sheldon L. Morris

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Steven C. Derrick

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Amy Yang

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Nathalie Cadieux

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Kristopher Kolibab

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Liyanage P. Perera

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjai Kumar

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge