Marcela S. Rodriguero
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcela S. Rodriguero.
International Journal for Parasitology | 2010
Carolina Cura; Ana María Mejía-Jaramillo; Tomás Duffy; Juan M. Burgos; Marcela S. Rodriguero; Marta V. Cardinal; Sonia A. Kjos; Rodrigo Gurgel-Gonçalves; Denis Blanchet; Luis Miguel De Pablos; Nicolás Tomasini; Alexandre J. da Silva; Graciela Russomando; César Augusto Cuba Cuba; Christine Aznar; Teresa Abate; Mariano J. Levin; Antonio Osuna; Ricardo E. Gürtler; Patricio Diosque; Aldo Solari; Omar Triana-Chávez; Alejandro G. Schijman
The intergenic region of spliced-leader (SL-IR) genes from 105 Trypanosoma cruzi I (Tc I) infected biological samples, culture isolates and stocks from 11 endemic countries, from Argentina to the USA were characterised, allowing identification of 76 genotypes with 54 polymorphic sites from 123 aligned sequences. On the basis of the microsatellite motif proposed by Herrera et al. (2007) to define four haplotypes in Colombia, we could classify these genotypes into four distinct Tc I SL-IR groups, three corresponding to the former haplotypes Ia (11 genotypes), Ib (11 genotypes) and Id (35 genotypes); and one novel group, Ie (19 genotypes). Genotypes harbouring the Tc Ic motif were not detected in our study. Tc Ia was associated with domestic cycles in southern and northern South America and sylvatic cycles in Central and North America. Tc Ib was found in all transmission cycles from Colombia. Tc Id was identified in all transmission cycles from Argentina and Colombia, including Chagas cardiomyopathy patients, sylvatic Brazilian samples and human cases from French Guiana, Panama and Venezuela. Tc Ie gathered five samples from domestic Triatoma infestans from northern Argentina, nine samples from wild Mepraia spinolai and Mepraia gajardoi and two chagasic patients from Chile and one from a Bolivian patient with chagasic reactivation. Mixed infections by Tc Ia+Tc Id, Tc Ia+Tc Ie and Tc Id+Tc Ie were detected in vector faeces and isolates from human and vector samples. In addition, Tc Ia and Tc Id were identified in different tissues from a heart transplanted Chagas cardiomyopathy patient with reactivation, denoting histotropism. Trypanosoma cruzi I SL-IR genotypes from parasites infecting Triatoma gerstaeckeri and Didelphis virginiana from USA, T. infestans from Paraguay, Rhodnius nasutus and Rhodnius neglectus from Brazil and M. spinolai and M. gajardoi from Chile are to our knowledge described for the first time.
Annals of The Entomological Society of America | 2004
Natalia Petit-Marty; M. T. Vera; Graciela Calcagno; Jorge L. Cladera; Diego F. Segura; Armando Allinghi; Marcela S. Rodriguero; P. Gómez Cendra; M. M. Viscarret; Juan C. Vilardi
Abstract Ongoing discussion on the taxonomic status of Anastrepha fraterculus (Wiedemann) and limited biological knowledge of this species emphasize a need for information on sexual behavior and mating compatibility among populations from different ecological regions. In this study, we studied four populations of A. fraterculus from different fruit-growing and biogeographical areas in Argentina, i.e., Yuto and Horco Molle from the northwest and Posadas and Concordia from the northeast. Pair-wise compatibility tests were performed for all possible combinations. Virgin males and females, in the proportion 1:1, were released into field cages containing a tangerine tree (Citrus reticulata Blanco). Sexual behavior was recorded in each cage. To determine the degree of mating compatibility between any two populations, sexual isolation indices and male and female performance indices were calculated. The values of the sexual isolation index did not differ statistically from the expected value (zero) under the assumption of random mating. This result indicates that A. fraterculus populations are fully mating compatible in Argentina, thus encouraging the application of the sterile insect technique to control this species in the region. Differences found between some populations in copulation duration and couple location in the cage suggest that variability might exist for these traits, requiring confirmation in the future.
Florida Entomologist | 2002
Marcela S. Rodriguero; Juan C. Vilardi; M. T. Vera; J. P. Cayol; E. Rial
Abstract The effects of male size and other morphometric traits as determinants of male mating success were evaluated under field cage conditions. Males of the laboratory Seib6-96 strain were released into field cages with males and females of a wild population from the Patagonian region. Mating pairs were classified as ‘successful’, while unmated flies were labeled as ‘unsuccessful’. Five morphometric traits were measured in a sample of 141 unsuccessful and 149 successful males: eye length (EL), head width (HW), thorax length (TL), face width (FW), and wing length (WL). An exploratory non-parametric Spearman’s rank correlation test indicated that mated males were in average larger for all traits (P < 0.01) except FW, indicating that with the exception of FW all traits are positively correlated with mating success. Step-wise multiple regression and principal component analysis + logistic regression indicated that the most likely targets of selection were TL, EL, and FW. The two former are positively correlated, while FW is negatively correlated with the fitness component analyzed here (male mating success). In previous studies where male-male interaction had been removed experimentally, EL was shown to be associated with female choice and no effect relative to mating success was detected on TL. On the basis of that study and the present results it is tempting to suggest that body size (TL) might be important in intra-sexual selection. However, size was found to be strain dependent and flies from the wild were on average bigger than laboratory ones. Size selection might then be correlated with copulatory success, as a side effect due to selection of wild males over lab males due to differential sexual activity or other causes. The potential importance of both intra-sexual selection (male-male interactions) and inter-sexual selection (mate choice) on the morphology of Ceratitis capitata is discussed on the basis of the results presented here and previous works.
Insect Molecular Biology | 2010
Marcela S. Rodriguero; Viviana A. Confalonieri; Jerson Vanderlei Carús Guedes; Analía A. Lanteri
Several parthenogenetic species of broad‐nosed weevils exist, some of them of economic importance because of their pest status. Screening of the maternally inherited Wolbachia bacterium in 29 weevils of the tribe Naupactini, using multilocus sequence typing allowed us to assess a significant correlation between asexuality and infection, and suggests an involvement of Wolbachia in the origin of this reproductive mode. The nine Wolbachia strains retrieved from the Naupactini belong to the B supergroup. Phylogenetic analysis of these strains, along with other 23 strains obtained from arthropods and nematodes, supports previous hypotheses that horizontal transfer of Wolbachia amongst species from unrelated taxa has been pervasive.
Florida Entomologist | 2007
Roberta Sciurano; Diego F. Segura; Marcela S. Rodriguero; Paula Gómez Cendra; Armando Allinghi; Jorge L. Cladera; Juan C. Vilardi
Abstract Despite the interest in applying environmentally friendly control methods such as sterile insect technique (SIT) against Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae), information about its biology, taxonomy, and behavior is still insufficient. To increase this information, the present study aims to evaluate the performance of wild flies under field cage conditions through the study of sexual competitiveness among males (sexual selection). A wild population from Horco Molle, Tucumán, Argentina was sampled. Mature virgin males and females were released into outdoor field cages to compete for mating. Morphometric analyses were applied to determine the relationship between the multivariate phenotype and copulatory success. Successful and unsuccessful males were measured for 8 traits: head width (HW), face width (FW), eye length (EL), thorax length (THL), wing length (WL), wing width (WW), femur length (FL), and tibia length (TIL). Combinations of different multivariate statistical methods and graphical analyses were used to evaluate sexual selection on male phenotype. The results indicated that wing width and thorax length would be the most probable targets of sexual selection. They describe a nonlinear association between expected fitness and each of these 2 traits. This nonlinear relation suggests that observed selection could maintain the diversity related to body size.
BMC Evolutionary Biology | 2010
Marcela S. Rodriguero; Analía A. Lanteri; Viviana A. Confalonieri
BackgroundMaternally inherited endosymbionts like Wolbachia pipientis are in linkage disequilibrium with the mtDNA of their hosts. Therefore, they can induce selective sweeps, decreasing genetic diversity over many generations. This sex ratio distorter, that is involved in the origin of parthenogenesis and other reproductive alterations, infects the parthenogenetic weevil Naupactus cervinus, a serious pest of ornamental and fruit plants.ResultsMolecular evolution analyses of mitochondrial (COI) and nuclear (ITS1) sequences from 309 individuals of Naupactus cervinus sampled over a broad range of its geographical distribution were carried out. Our results demonstrate lack of recombination in the nuclear fragment, non-random association between nuclear and mitochondrial genomes and the consequent coevolution of both genomes, being an indirect evidence of apomixis. This weevil is infected by a single Wolbachia strain, which could have caused a moderate bottleneck in the invaded population which survived the initial infection.ConclusionsClonal reproduction and Wolbachia infection induce the coevolution of bacterial, mitochondrial and nuclear genomes. The time elapsed since the Wolbachia invasion would have erased the traces of the demographic crash in the mtDNA, being the nuclear genome the only one that retained the signal of the bottleneck. The amount of genetic change accumulated in the mtDNA and the high prevalence of Wolbachia in all populations of N. cervinus agree with the hypothesis of an ancient infection. Wolbachia probably had great influence in shaping the genetic diversity of N. cervinus. However, it would have not caused the extinction of males, since sexual and asexual infected lineages coexisted until recent times.
Molecular Phylogenetics and Evolution | 2013
Marcela S. Rodriguero; Analía A. Lanteri; Viviana A. Confalonieri
Population genetic theory shows that asexual organisms may evolve into species, which behave as independent evolutionary units. As a result, they form genotypic clusters separated by deep gaps due to geographic isolation and/or divergent selection. Identification of several genetically divergent groups of weevils embodied in the nominal species Naupactus cervinus deserves further study, in order to test if these lineages are evolving independently. In the present paper we tested if the parthenogenetic weevil N. cervinus, native to South America and broadly distributed throughout the world, contains more than one evolutionary unit. For this purpose, we applied three different approaches, a multilocus phylogenetic analysis, the GMYC approach and the K/θ method. We accomplished these analyses through a survey of mitochondrial (COI and COII genes) and nuclear (ITS1 sequence) genetic variation and morphometric analysis in a sample which included individuals from different locations within the native geographic range of N. cervinus. In addition, we compared the divergence accumulated in this species with that in another weevil of the same tribe (Naupactini) showing identical reproductive mode to see if similar levels of morphological variation matches similar levels of genetic divergence. We report the presence of two independent evolutionary units living in sympatry in forest areas. The incongruence between mitochondrial and nuclear datasets analyzed herein reflects incomplete lineage sorting of the nuclear marker and different evolutionary rates between genomes. Ecological divergence driven by natural selection (sympatry) or secondary contact after geographic isolation (allopatry) might explain the deep gaps in mitochondrial phylogenies. Instead, Wolbachia infection was ruled out as a causal factor for such differentiation. We conclude that N. cervinus is probably a species complex with at least two well differentiated lineages that would represent a cluster of species in statu nascendi.
Journal of Invertebrate Pathology | 2012
María Cecilia Tranchida; P.M. Riccillo; Marcela S. Rodriguero; Juan J. García; María V. Micieli
A survey of drainage ditches in suburban areas of La Plata, Buenos Aires province, Argentina for pathogens of Culex pipiens larvae was conducted from 2003 to 2006. C. pipiens larvae of opaque, white color were found in several of those field collections. When the white larvae were dissected and observed by phase-contrast microscopy in wet-mount preparations, the presence of bacteria, located in the hemocoel, was recorded. Laboratory experiments were performed to elucidate the pathway for transmission of this pathogen. Although approaches involving traditional culturing had failed to reveal the identity of the new microorganism present, molecular techniques to identify the pathogen in the studies reported here were successful. The partial sequence of the 16S-rRNA gene constitutes a powerful tool for the detection of new isolates from the hemocoele of C. pipiens larvae. These bacteria were characterized as belonging to the genus Novispirillum. In spite of the genuss wide distribution in different aquatic environments, information related to the parasitic relationship of Novispirillum spp. to aquatic insects is scarce, and this association has not been described in other mosquito species. This report constitutes the first documentation of Novispirillum spp. as a pathogen for mosquito larvae.
International Journal of Food Microbiology | 2017
Lucía da Cruz Cabral; Marcela S. Rodriguero; Sebastián Stenglein; Kristian Fog Nielsen; Andrea Patriarca
Small-spored Alternaria have been isolated from a wide variety of food crops, causing both economic losses and human health risk due to the metabolites produced. Their taxonomy has been discussed widely, but no scientific consensus has been established in this field to date. Argentina is a major exporter of agricultural products, so it is essential to thoroughly understand the physiological behaviour of this pathogen in a food safety context. Thus, the objective of this work was to characterize small-spored Alternaria spp. obtained from tomato fruits, pepper fruits, wheat grains and blueberries from Argentina by a polyphasic approach involving metabolomic and phylogenetic analyses based on molecular and morphological characters. Morphological analysis divided the population studied into three groups; A. arborescens sp.-grp., A. tenuissima sp.-grp., and A. alternata sp.-grp. However, when these characters were simultaneously analysed with molecular data, no clearly separated groups were obtained. Haplotype network and phylogenetic analysis (both Bayesian and maximum parsimony) of a conserved region yielded the same result, suggesting that all isolates belong to the same species. Furthermore, no correlation could be established between morphological species-groups and a metabolite or group of metabolites synthesized. Thus, the whole set of analyses carried out in the present work supports the hypothesis that these small-spored Alternaria isolates from food belong to the same species. Identification at species level through classical morphology or modern molecular techniques does not seem to be a useful tool to predict toxicological risk in food matrices. The detection of any small-spored Alternaria from Section Alternaria (D.P. Lawr., Gannibal, Peever & B.M. Pryor 2013) in food implies a potential toxicological risk.
Ecology and Evolution | 2016
Marcela S. Rodriguero; Analía A. Lanteri; Noelia V. Guzmán; Jerson Vanderlei Carús Guedes; Viviana A. Confalonieri
Abstract Previous research revealed complex diversification patterns in the parthenogenetic weevil Naupactus cervinus. To understand the origin of clonal diversity and successful spreading of this weevil, we investigated its geographic origin and possible dispersal routes and whether parthenogens can persist in habitats under unsuitable environmental conditions. This study is based on samples taken throughout a broad area of the species’ range. We used both mitochondrial and nuclear markers and applied phylogenetic and network analyses to infer possible relationships between haplotypes. Bayesian phylogeographic analyses and ecological niche modeling were used to investigate the processes that shaped genetic diversity and enabled the colonization of new geographic areas. Southeastern Brazil emerges as the original distribution area of N. cervinus. We detected two range expansions, one along natural corridors during the Pleistocene and the other in countries outside South America during recent times. Isolation due to climate shifts during the early Pleistocene led to diversification in two divergent clades, which probably survived in different refugia of the Paranaense Forest and the Paraná River delta. The origin of the clonal diversity was probably a complex process including mutational diversification, hybridization, and secondary colonization. The establishment of N. cervinus in areas outside its native range may indicate adaptation to drier and cooler conditions. Parthenogenesis would be advantageous for the colonization of new environments by preventing the breakup of successful gene combinations. As in other insect pests, the present distribution of N. cervinus results from both its evolutionary history and its recent history related to human activities.