Marcela V. Mihai
University of Craiova
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcela V. Mihai.
Applied Mathematics and Computation | 2015
Marcela V. Mihai; Muhammad Aslam Noor; Khalida Inayat Noor; Muhammad Uzair Awan
The aim of this paper is to establish some new Hermite-Hadamard type inequalities for harmonic h-convex functions involving hypergeometric functions. We also discuss some new and known special cases, which can be deduced from our results. The ideas and techniques of this paper may inspire further research in this field.
Journal of Inequalities and Applications | 2017
Muhammad Uzair Awan; Muhammad Aslam Noor; Marcela V. Mihai; Khalida Inayat Noor
In this paper, we derive a new extension of Hermite-Hadamard’s inequality via k-Riemann-Liouville fractional integrals. Two new k-fractional integral identities are also derived. Then, using these identities as an auxiliary result, we obtain some new k-fractional bounds which involve k-Appell’s hypergeometric functions. These bounds can be viewed as new k-fractional estimations of trapezoidal and mid-point type inequalities. These results are obtained for the functions which have the harmonic convexity property. We also discuss some special cases which can be deduced from the main results of the paper.
Applied Mathematics & Information Sciences | 2018
Muhammad Uzair Awan; Muhammad Aslam Noor; Marcela V. Mihai; Khalida Inayat Noor
In this section, we shall briefly introduce some recent studies of the subject. We discuss some previously known concepts and results. These preliminaries help the readers to understand the main results of the paper. Before proceeding let us recall the classical convexity on coordinates, which is also known as two dimensional classical convexity. Dragomir [ 7] was the first to investigate this extension of classical convexity in connection with integral inequalities. Let us consider a bidimensional interval Ω = [a,b]× [c,d]⊂ R2 with a< b andc < d. A function F : Ω → R is said to be convex function onΩ , if the following inequality
Tbilisi Mathematical Journal | 2017
Muhammad Uzair Awan; Muhammad Aslam Noor; Marcela V. Mihai; Khalida Inayat Noor
Abstract The aim of this paper is to obtain some new refinements of Hermite-Hadamard type inequalities via conformable fractional integrals. The class of functions used for deriving the inequalities have the preinvexity property. We also discuss some special cases.
Journal of Inequalities and Applications | 2017
Marcela V. Mihai; Muhammad Uzair Awan; Muhammad Aslam Noor; Khalida Inayat Noor
The objective of this paper is to establish some new refinements of fractional Hermite-Hadamard inequalities via a harmonically convex function with a kernel containing the generalized Mittag-Leffler function.
Acta Mathematica Universitatis Comenianae | 2014
Flavia-Corina Mitroi; Marcela V. Mihai
Filomat | 2016
Muhammad Uzair Awan; Muhammad Aslam Noor; Marcela V. Mihai; Khalida Inayat Noor
Mediterranean Journal of Mathematics | 2016
Marcela V. Mihai; Constantin P. Niculescu
Mediterranean Journal of Mathematics | 2016
Marcela V. Mihai; Flavia-Corina Mitroi-Symeonidis
Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas | 2018
Muhammad Uzair Awan; Muhammad Aslam Noor; Marcela V. Mihai; Khalida Inayat Noor; Bandar Abdullah AlMohsen