Marcello Marotta
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcello Marotta.
IEEE Transactions on Nuclear Science | 2008
Roberto Accorsi; Luigi Celentano; Paolo Laccetti; Richard C. Lanza; Marcello Marotta; Giovanni Mettivier; M.C. Montesi; Giuseppe Roberti; Paolo Russo
We report on tests of a radionuclide imaging system for in vivo investigations in small animals with low-energy photons as from 125I (27-35 keV). Imaging optics features a high-resolution coded aperture mask and a fine pitch hybrid pixel detector (silicon 300-mum or 700-mum thick, or CdTe 1 mm thick) of the Medipix2 series (55 mum pitch, 256 x 256 pixels). The coded aperture had 480 70-mum holes in 100-mum-thick tungsten. Laboratory tests with a 109Cd 22 keV source and a microfocus X-ray tube (35 kVp, Mo anode) show a system resolution of about 110 mum at magnification m = 2.12 and a sensitivity improvement of 30:1 as compared to a 300-mum pinhole collimator. The field of view also depends on magnification: in the experiments presented, it varied from 6 mm (m = 2.12) to 21 mm (m = 0.66). 125I in vivo mouse thyroid imaging with the 70 mum coded aperture, a 300 mum pinhole and a 100 mum parallel hole collimator was also performed to obtain a qualitative comparison. This low energy, semiconductor-based, compact gamma-ray imaging system can be used as a gamma-ray sub-millimeter resolution imager for energies below about 35 keV and it is the basic imaging unit of a small animal Single Photon Emission Computed Tomography system (MediSPECT) built at University of Napoli Federico II and Istituto Nazionale Fisica Nucleare (INFN), Napoli.
ieee nuclear science symposium | 2003
Maddalena Autiero; Luigi Celentano; Rosanna Cozzolino; Paolo Laccetti; Marcello Marotta; Giovanni Mettivier; M.C. Montesi; Patrizia Riccio; Giuseppe Roberti; Paolo Russo
We report on tests of a combined fluorescence and radionuclide planar imaging system for in vivo investigation on small animals. Combined images of anaesthetized mice bearing a surface solid tumor are presented. The fluorescent marker is a hematoporphyrin compound laser-excited with green light and imaged in the red fluorescence emission with a standard monochrome charge coupled device (CCD) camera. The gamma-ray (/sup 99m/Tc) pinhole imaging system uses a semiconductor pixel detector obtained by hybridizing a Silicon (300-/spl mu/m thick) or a CdTe (1-mm thick) pixel detector to the Medipix2 (55-/spl mu/m pitch) readout integrated circuit for single photon counting. The acquisition of combined images of the tumor area (fluorescence: animal top view; radionuclide: bottom view) shows that the tumor area can be imaged in a few minutes, with a few millimeter resolution (1-mm pinhole diameter), radioactively (/sup 99m/Tc MIBI, 74 MBq), and with the optical system. Combined imaging revealed also a different uptake of the two types of tumors studied (one grown from anaplastic human thyroid carcinoma-derived cells, the other from human papillary carcinoma-derived cells). Future progress will be toward a more compact optical setup and the use of a thicker CdTe detector.
Physics in Medicine and Biology | 2008
Paolo Russo; A. Lauria; Giovanni Mettivier; M.C. Montesi; Marcello Marotta; L Aloj; S Lastoria
We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the systems linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.
IEEE Symposium Conference Record Nuclear Science 2004. | 2004
Roberto Accorsi; Maddalena Autiero; Luigi Celentano; Paolo Laccetti; Richard C. Lanza; Marcello Marotta; Giovanni Mettivier; M.C. Montesi; Patrizia Riccio; Giuseppe Roberti; Paolo Russo
We report on tests of a radionuclide imaging system for in vivo investigations in small animals with low energy gamma-rays as from /sup 125/I (27-35 keV). The system imaging optics features a high resolution coded aperture mask and a fine pitch silicon hybrid pixel detector of the Medipix2 series (55 /spl mu/m pitch). The coded aperture (no-two-holes-touching MURA 62/spl times/62) had 70 /spl mu/m holes in 75 /spl mu/m tungsten, and was used in a 2:1 magnification for a field of view of about 7 mm. Laboratory tests with a /sup 109/Cd 22-keV source and in vivo mouse thyroid imaging tests with /sup 125/I show a system resolution of about 110 /spl mu/m. This low energy, semiconductor-based, compact gamma camera is the basic imaging unit of a small animal single photon emission computed tomography system with deep sub-millimeter resolution.
Physics in Medicine and Biology | 1991
U Bernini; Marcello Marotta; G Martino; Paolo Russo
Reports on the possibility of using PA spectroscopy as an analytical technique in the quantitative measurement of the concentration of haemoproteins (HP) (e.g. haemoglobin (Hb) and myoglobin (Mb)) in excised, unprocessed wet tissue. A physical procedure to quantify HP content in wet tissue could be useful for assessing local tissue vascolarization and in many circumstances in forensic medicine, as an alternative to analytical biochemical techniques.
Progress in biomedical optics and imaging | 2006
Maddalena Autiero; Luigi Celentano; Rosanna Cozzolino; Paolo Laccetti; Marcello Marotta; Giovanni Mettivier; M.C. Montesi; Patrizia Riccio; Giuseppe Roberti; Paolo Russo
We devised a multimodal planar imaging system for in vivo mouse imaging, employing four modalities: optical imaging, green and red fluorescence reflectance imaging, radionuclide imaging and X-ray radiography. We are testing separately, and then in a combined way, each detection mode, via in vivo mouse imaging, with the final purpose of identifying small implanted tumor masses, of providing early tumor detection and following metastatic dissemination. We describe the multimodal system and summarize its main performance, as assessed in our research work in the various stages of the development, in fluorescence and radionuclide tests on healthy or tumor bearing mice. For gamma-ray detection we used a semiconductor pixel detector (Medipix1 or Medipix2) that works in single photon counting. Laser-induced fluorescence reflectance imaging was performed in vivo using a pulsed light source to excite the fluorescence emission of injected hematoporphyrin (HP) compound, a CCD camera, a low pass filter and a commercial image analysis system. The bimodal system was used for the acquisition of combined images of the tumor area (fluorescence: animal top view; radionuclide: bottom view). It was shown that the tumor area can be imaged in a few minutes, with a few millimeter resolution (1 mm pinhole diameter), radioactively (99mTc radiotracer), and with the fluorescence system and that, in one case, only one of the two modalities is able to recognize the tumor. A phantom study for thyroid imaging with 125I source embedded in a simulated tissue indicated a spatial resolution of 1.25 mm FWHM with a 1 mm pinhole.
Biomedical Engineering Online | 2004
Anna Rita Calafiori; Marcello Marotta; A. Nastro; Guglielmo Martino
BackgroundCalcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity.MethodsCommercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation.ResultsThe X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains.ConclusionsThe dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues.
Photon Migration and Diffuse-Light Imaging II (2005), paper TuH13 | 2005
Maddalena Autiero; Luigi Celentano; Paolo Laccetti; Marcello Marotta; Giovanni Mettivier; M.C. Montesi; Patrizia Riccio; Paolo Russo; Giuseppe Roberti
Recently multimodal imaging systems have been devised because the combination of different imaging modalities results in the complementarity and integration of the techniques and in a consequent improvement of the diagnostic capabilities of the multimodal system with respect to each separate imaging modality. We developed a simple and reliable HematoPorphyrin (HP) mediated Fluorescence Reflectance Imaging (FRI) system that allows for in vivo real time imaging of surface tumors with a large field of view. The tumor cells are anaplastic human thyroid carcinoma-derived ARO cells, or human papillary thyroid carcinoma-derived NPA cells. Our measurements show that the optical contrast of the tumor region image is increased by a simple digital subtraction of the background fluorescence and that HP fluorescence emissivity of ARO tumors is about 2 times greater than that of NPA tumors, and about 4 times greater than that of healthy tissues. This is also confirmed by spectroscopic measurements on histological sections of tumor and healthy tissues. It was shown also the capability of this system to distinguish the tumor type on the basis of the different intensity of the fluorescence emission, probably related to the malignancy degree. The features of this system are complementary with those ones of a pixel radionuclide detection system, which allows for relatively time expensive, narrow field of view measurements, and applicability to tumors also deeply imbedded in tissues. The fluorescence detection could be used as a large scale and quick analysis tool and could be followed by narrow field, higher resolution radionuclide measurements on previously determined highly fluorescent regions.
Photomedicine and Laser Surgery | 2010
Maddalena Autiero; Rosanna Cozzolino; Paolo Laccetti; Marcello Marotta; Maria Quarto; Patrizia Riccio; Giuseppe Roberti
OBJECTIVE Noninvasive in vivo imaging of human tumors implanted in mice provides a reliable and economic tool for the investigation of tumor progression and metastasis and of the effectiveness of the antiblastic drugs on them. The purpose of this study is to report on the performance achievable by the well-known and extensively investigated HP-FRI (HematoPorphyrin (HP)-mediated Fluorescence Reflectance Imaging) when a high-quality image-acquisition device is used. BACKGROUND DATA Previous articles of ours showed that HP-FRI still represents a useful, simple and reliable optical imaging technique to detect surface tumors. Therefore, it is particularly suitable to be used in combination with other imaging modalities in a multimodal imaging system endowed with diagnostic capabilities much better than each separate modality. MATERIALS AND METHODS Six-week-old Crl:CD-1 nude mice were subcutaneously inoculated with tumor cells. Tumor-bearing mice were irradiated in vivo by a frequency-doubled pulsed Nd:YAG laser (lambda = 532 nm). A cooled CCD digital camera recorded fluorescence light emitted by HP injected in mice through a cut-on long-wavelength pass filter. RESULTS The system we developed allows in vivo imaging of surface tumors on small animals with a large field of view, high photometric sensitivity, adequate space resolution, and short measurement time. The estimated spatial resolution is 730 microm for a fluorescence source placed about 0.5 mm under the mouse skin. The first exploration of the capabilities of this HP-FRI setup on few mice shows that it allows the detection of (a) both types of investigated tumors, (b) early stage and late stage but visually unrecognizable tumors, (c) the gross structure of tumors, and (d) the discrimination of necrotic and nonnecrotic tumor regions.
IEEE Transactions on Nuclear Science | 2010
Giovanni Mettivier; M.C. Montesi; Assunta Simona Curion; A. Lauria; Marcello Marotta; Paolo Russo
The first in vivo tomographic 125I imaging of the mouse thyroid carried out with the new MediSPECT small animal SPECT scanner is presented. The scanner is based on a fine pitch CdTe semiconductor pixel detector (14 × 14 mm2, 256 × 256 square pixel with a 55 m side) and equipped with a set of high resolution collimators. The collimation and detection units of the scanner are mounted on a gantry, rotating around a horizontal axis, along which is placed the small animal housing. In an in vivo test, the mouse was injected with a Na125 I solution having a total activity of 31.8 MBq. The planar projections for SPECT reconstruction were acquired with a 300 m pinhole (magnification 1.47 and field of view of 9.6 × 9.6 mm2). The projections were captured in a step-and-shoot fashion and were processed with an Ordered Subsets-Expectation Maximization reconstruction algorithm in order to obtain the SPECT images. Several 125I imaging tests have been made by using phantoms to assess the detector spatial resolution. The measured spatial resolution with a 300 m pinhole is about 0.5 mm in planar imaging and better than 1 mm in tomographic imaging.