Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcelo de Bello Cioffi is active.

Publication


Featured researches published by Marcelo de Bello Cioffi.


BMC Evolutionary Biology | 2010

Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish

Marcelo de Bello Cioffi; Cesar Martins; Luiz Antonio Carlos Bertollo

BackgroundThe fish, Erythrinus erythrinus, shows an interpopulation diversity, with four karyomorphs differing by chromosomal number, chromosomal morphology and heteromorphic sex chromosomes. Karyomorph A has a diploid number of 2n = 54 and does not have differentiated sex chromosomes. Karyomorph D has 2n = 52 chromosomes in females and 2n = 51 in males, and it is most likely derived from karyomorph A by the differentiation of a multiple X1X2Y sex chromosome system. In this study, we analyzed karyomorphs A and D by means of cytogenetic approaches to evaluate their evolutionary relationship.ResultsConspicuous differences in the distribution of the 5S rDNA and Rex3 non-LTR retrotransposon were found between the two karyomorphs, while no changes in the heterochromatin and 18S rDNA patterns were found between them. Rex3 was interstitially dispersed in most chromosomes. It had a compartmentalized distribution in the centromeric regions of only two acrocentric chromosomes in karyomorph A. In comparison, in karyomorph D, Rex3 was found in 22 acrocentric chromosomes in females and 21 in males. All 5S rDNA sites co-localized with Rex3, suggesting that these are associated in the genome. In addition, the origin of the large metacentric Y chromosome in karyomorph D by centric fusion was highlighted by the presence of internal telomeric sites and 5S rDNA/Rex3 sites on this chromosome.ConclusionWe demonstrated that some repetitive DNAs (5S rDNA, Rex3 retroelement and (TTAGGG)n telomeric repeats) were crucial for the evolutionary divergence inside E. erythrinus. These elements were strongly associated with the karyomorphic evolution of this species. Our results indicate that chromosomal rearrangements and genomic modifications were significant events during the course of evolution of this fish. We detected centric fusions that were associated with the differentiation of the multiple sex chromosomes in karyomorph D, as well as a surprising increase of associated 5S rDNA/Rex3 loci, in contrast to karyomorph A. In this sense, E. erythrinus emerges as an excellent model system for better understanding the evolutionary mechanisms underlying the huge genome diversity in fish. This organism can also contribute to understanding vertebrate genome evolution as a whole.


Journal of Fish Biology | 2010

Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives

M. R. Vicari; V. Nogaroto; Rafael Bueno Noleto; Marta Margarete Cestari; Marcelo de Bello Cioffi; M. C. Almeida; Orlando Moreira-Filho; Luiz Antonio Carlos Bertollo; R. F. Artoni

Constitutive heterochromatin represents a substantial portion of the eukaryote genome, and it is mainly composed of tandemly repeated DNA sequences, such as satellite DNAs, which are also enriched by other dispersed repeated elements, including transposons. Studies on the organization, structure, composition and in situ localization of satellite DNAs have led to consistent advances in the understanding of the genome evolution of species, with a particular focus on heterochromatic domains, the diversification of heteromorphic sex chromosomes and the origin and maintenance of B chromosomes. Satellite DNAs can be chromosome specific or species specific, or they can characterize different species from a genus, family or even representatives of a given order. In some cases, the presence of these repeated elements in members of a single clade has enabled inferences of a phylogenetic nature. Genomic DNA restriction, using specific enzymes, is the most frequently used method for isolating satellite DNAs. Recent methods such as C(0)t-1 DNA and chromosome microdissection, however, have proven to be efficient alternatives for the study of this class of DNA. Neotropical ichthyofauna is extremely rich and diverse enabling multiple approaches with regard to the differentiation and evolution of the genome. Genome components of some species and genera have been isolated, mapped and correlated with possible functions and structures of the chromosomes. The 5SHindIII-DNA satellite DNA, which is specific to Hoplias malabaricus of the Erythrinidae family, has an exclusively centromeric location. The As51 satellite DNA, which is closely correlated with the genome diversification of some species from the genus Astyanax, has also been used to infer relationships between species. In the Prochilodontidae family, two repetitive DNA sequences were mapped on the chromosomes, and the SATH 1 satellite DNA is associated with the origin of heterochromatic B chromosomes in Prochilodus lineatus. Among species of the genus Characidium and the Parodontidae family, amplifications of satellite DNAs have demonstrated that these sequences are related to the differentiation of heteromorphic sex chromosomes. The possible elimination of satellite DNA units could explain the genome compaction that occurs among some species of Neotropical Tetraodontiformes. These topics are discussed in the present review, showing the importance of satellite DNA analysis in the differentiation and karyotype evolution of Actinopterygii.


Cytogenetic and Genome Research | 2009

Chromosomal Variability among Allopatric Populations of Erythrinidae Fish Hoplias malabaricus: Mapping of Three Classes of Repetitive DNAs

Marcelo de Bello Cioffi; Cesar Martins; L. Centofante; U. Jacobina; Luiz Antonio Carlos Bertollo

Karyotype and chromosomal characteristics from 3 allopatric populations of Hoplias malabaricus, cytogenetically the most studied Erythrinidae taxon, were investigated using different staining techniques (C-, Ag-, and CMA3 banding) as well as fluorescent in situ hybridization (FISH) to detect 18S rDNA, 5S rDNA, and 5SHindIII satellite DNA sites. The isolation, cloning and characterization of an 18S rDNA probe from H. malabaricus genome were also performed for the first time in order to develop a more specific probe. The 3 populations, named PR, CR, and DR, showed identical karyotypes, with 2n = 42 chromosomes composed of 11 m pairs and 10 sm pairs, without heteromorphic sex chromosomes, which characterize the populations as belonging to karyomorph A. In all populations C-positive heterochromatin was situated in the centromeric/pericentromeric regions of the chromosomes, as well as in the telomeric region of several pairs. A conspicuous proximal heterochromatic block on the long arm of pair No. 16 was the only GC-rich segment in the karyotypes. 5SHindIII satellite DNA was always mapped in the centromeric region of several chromosomes. The 18S rDNA sites were situated on the telomeric or centromeric regions, whereas the 5S rDNA showed an interstitial or proximal location in some pairs. Several chromosomes bearing these repetitive DNA sequences were shared by the 3 populations, alongside with some exclusive chromosomal markers. In this sense, population CR was the most differentiated one, including a syntenic condition for the 18S and 5S rDNA probes, as confirmed by double FISH. Thus, despite their inclusion in the same major karyotypic group, the distinct populations cannot be considered an absolute evolutionary unit, as evidenced by their inner chromosomal differentiations.


BMC Genetics | 2009

Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus

Marcelo de Bello Cioffi; Cesar Martins; Luiz Antonio Carlos Bertollo

BackgroundSeven karyomorphs of the fish, Hoplias malabaricus (A-G) were previously included in two major groups, Group I (A, B, C, D) and Group II (E, F, G), based on their similar karyotype structure. In this paper, karyomorphs from Group I were analyzed by means of distinct chromosomal markers, including silver-stained nucleolar organizer regions (Ag-NORs) and chromosomal location of repetitive sequences (18S and 5S rDNA, and satellite 5SHind III-DNA), through fluorescence in situ hybridization (FISH), in order to evaluate the evolutionary relationships among them.ResultsThe results showed that several chromosomal markers had conserved location in the four karyomorphs. In addition, some other markers were only conserved in corresponding chromosomes of karyomorphs A-B and C-D. These data therefore reinforced and confirmed the proposed grouping of karyomorphs A-D in Group I and highlight a closer relationship between karyomorphs A-B and C-D. Moreover, the mapping pattern of some markers on some autosomes and on the chromosomes of the XY and X1X2Y systems provided new evidence concerning the possible origin of the sex chromosomes.ConclusionThe in situ investigation of repetitive DNA sequences adds new informative characters useful in comparative genomics at chromosomal level and provides insights into the evolutionary relationships among Hoplias malabaricus karyomorphs.Seven karyomorphs of the fish, Hoplias malabaricus (A-G) were previously included in two major groups, Group I (A, B, C, D) and Group II (E, F, G), based on their similar karyotype structure. In this paper, karyomorphs from Group I were analyzed by means of distinct chromosomal markers, including silver-stained nucleolar organizer regions (Ag-NORs) and chromosomal location of repetitive sequences (18S and 5S rDNA, and satellite 5SHind III-DNA), through fluorescence in situ hybridization (FISH), in order to evaluate the evolutionary relationships among them. The results showed that several chromosomal markers had conserved location in the four karyomorphs. In addition, some other markers were only conserved in corresponding chromosomes of karyomorphs A-B and C-D. These data therefore reinforced and confirmed the proposed grouping of karyomorphs A-D in Group I and highlight a closer relationship between karyomorphs A-B and C-D. Moreover, the mapping pattern of some markers on some autosomes and on the chromosomes of the XY and X1X2Y systems provided new evidence concerning the possible origin of the sex chromosomes. The in situ investigation of repetitive DNA sequences adds new informative characters useful in comparative genomics at chromosomal level and provides insights into the evolutionary relationships among Hoplias malabaricus karyomorphs.


Cytogenetic and Genome Research | 2011

The Chromosomal Distribution of Microsatellite Repeats in the Genome of the Wolf Fish Hoplias malabaricus, Focusing on the Sex Chromosomes

Marcelo de Bello Cioffi; E. Kejnovsky; Luiz Antonio Carlos Bertollo

Distribution of 12 mono-, di- and tri-nucleotide microsatellites on the chromosomes of 2 karyomorphs with 2 distinct sex chromosome systems (a simple XX/XY – karyomorph B and a multiple X1X1X2X2/X1X2Y – karyomorph D) in Hoplias malabaricus, commonly referred to as wolf fish, was studied using their physical mapping with fluorescence in situ hybridization (FISH). The distribution patterns of different microsatellites along the chromosomes varied considerably. Strong hybridization signals were observed at subtelomeric and heterochromatic regions of several autosomes, with a different accumulation on the sex chromosomes. A massive accumulation was found in the heterochromatic region of the X chromosome of karyomorph B, whereas microsatellites were gathered at centromeres of both X chromosomes as well as in corresponding regions of the neo-Y chromosome in karyomorph D. Our findings are likely in agreement with models that predict the accumulation of repetitive DNA sequences in regions with very low recombination. This process is however in contrast with what was observed in multiple systems, where such a reduction might be facilitated by the chromosomal rearrangements that are directly associated with the origin of these systems.


Molecular Cytogenetics | 2012

The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system

Marcelo de Bello Cioffi; Eduard Kejnovský; Vinicius Marquioni; Juliana Poltronieri; Wagner Franco Molina; Débora Diniz; Luiz Antonio Carlos Bertollo

Despite substantial progress, there are still several gaps in our knowledge about the process of sex chromosome differentiation. The degeneration of sex-specific chromosome in some species is well documented, but it is not clear if all species follow the same evolutionary pathway. The accumulation of repetitive DNA sequences, however, is a common feature. To better understand this involvement, fish species emerge as excellent models because they exhibit a wide variety of sex chromosome and sex determining systems. Besides, they have much younger sex chromosomes compared to higher vertebrates, making it possible to follow early steps of differentiation. Here, we analyzed the arrangement of 9 repetitive DNA sequences in the W chromosomes of 2 fish species, namely Leporinus reinhardti and Triportheus auritus, which present well-differentiated ZZ/ZW sex system, but differ in respect to the size of the sex-specific chromosome. Both W chromosomes are almost fully heterochromatic, with accumulation of repeated DNAs in their heterochromatic regions. We found that microsatellites have strongly accumulated on the large W chromosome of L. reinhardti but not on the reduced-size W chromosome of T. auritus and are therefore important players of the W chromosome expansion. The present data highlight that the evolution of the sex chromosomes can diverge even in the same type of sex system, with and without the degeneration of the specific-sex chromosome, being more dynamic than traditionally appreciated.


Cytogenetic and Genome Research | 2008

Microdissection and whole chromosome painting. Improving sex chromosome analysis in Triportheus (Teleostei, Characiformes)

Débora Diniz; A. Laudicina; Marcelo de Bello Cioffi; Luiz Antonio Carlos Bertollo

Triportheus fish species present 2n = 52 chromosomes. The karyotypes show similar macrostructure and a ZZ/ZW sex chromosome system, which probably represents synapomorphy for the genus. A probe of the Z chromosome was obtained from T. nematurus through microdissection, followed by unspecific amplification via DOP-PCR. This probe was used for WCP (whole chromosome painting) through fluorescent in situ hybridization (FISH) in several other Triportheus species, to analyze the differentiation of the ZZ/ZW system. The homology between this probe and chromosomes of species from other genera, putatively related to Triportheus, was also examined to search for evidence about evolution of their sex chromosomes. Complete homology was found among the Z chromosomes of all Triportheus species, while only small positive signals were found on the W chromosomes. Hybridization signals were absent in species from other genera. The present results reinforce both the conservative nature of Z chromosomes and the hypothesis that the ZZ/ZW sex chromosome system is a synapomorphic feature of Triportheus. On the other hand, besides reduction of size, W chromosomes have undergone accentuated composition changes in relation to Z chromosomes, since only a small region, usually located in the short arm, kept homology with the Z chromosomes.


Cytogenetic and Genome Research | 2011

Repetitive DNAs and Differentiation of Sex Chromosomes in Neotropical Fishes

Marcelo de Bello Cioffi; Juan Pedro M. Camacho; Luiz Antonio Carlos Bertollo

The processes working on sex chromosome differentiation are still not completely understood. However, the accumulation of repetitive DNA sequences has been shown to be one of the first steps in the early stages of such differentiation. In addition, regions with suppressed or no recombination have a potential to accumulate these DNA sequences and, for this reason, the absence of recombination between the sex chromosomes favors, by itself, the accumulation of repetitive sequences on these chromosomes during evolution. The diversity of sex-determining mechanisms in fish, alongside with the absence of heteromorphic sex chromosomes in many species, makes this group a useful model to better understand evolutionary processes of sex chromosomes in vertebrates, considering that fish occupy the basal position in the phylogeny of this group. In this review we draw attention to a preferential accumulation and enrichment in repetitive DNAs in sex chromosomes of many neotropical fish species in comparison with autosomes. This phenomenon has been observed between both morphologically differentiated and nascent sex chromosome systems, which highlight the potential role of these sequences in the differentiation of fish sex chromosomes generating differences in morphology and size between them.


Sexual Development | 2010

Differentiation of the XY Sex Chromosomes in the Fish Hoplias malabaricus (Characiformes, Erythrinidae): Unusual Accumulation of Repetitive Sequences on the X Chromosome

Marcelo de Bello Cioffi; Cesar Martins; M. R. Vicari; Laureana Rebordinos; Luiz Antonio Carlos Bertollo

The wolf fish Hoplias malabaricus (Erythrinidae) presents a high karyotypic diversity, with 7 karyomorphs identified. Karyomorph A is characterized by 2n = 42 chromosomes, without morphologically differentiated sex chromosomes. Karyomorph B also has 2n = 42 chromosomes for both sexes, but differs by a distinct heteromorphic XX/XY sex chromosome system. The cytogenetic mapping of 5 classes of repetitive DNA indicated similarities between both karyomorphs and the probable derivation of the XY chromosomes from pair No. 21 of karyomorph A. These chromosomes appear to be homeologous since the distribution of (GATA)n sequences, 18S rDNA and 5SHindIII-DNA sites supports their potential relatedness. Our data indicate that the differentiation of the long arms of the X chromosome occurred by accumulation of heterochromatin and 18S rDNA cistrons from the ancestral homomorphic pair No. 21 present in karyomorph A. These findings are further supported by the distribution of the Cot-1 DNA fraction. In addition, while the 18S rDNA cistrons were maintained and amplified on the X chromosomes, they were lost in the Y chromosome. The X chromosome was a clearly preferred site for the accumulation of DNA repeats, representing an unusual example of an X clustering more repetitive sequences than the Y during sex chromosome differentiation in fish.


PLOS ONE | 2014

Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes.

Cassia Fernanda Yano; Juliana Poltronieri; Luiz Antonio Carlos Bertollo; Roberto Ferreira Artoni; Thomas Liehr; Marcelo de Bello Cioffi

Repetitive DNA sequences play an important role in the structural and functional organization of chromosomes, especially in sex chromosome differentiation. The genus Triportheus represents an interesting model for such studies because all of its species analyzed so far contain a ZZ/ZW sex chromosome system. A close relationship has been found between the differentiation of the W chromosome and heterochromatinization, with the involvement of different types of repetitive DNA in this process. This study investigated several aspects of this association in the W chromosome of Triportheus trifurcatus (2n = 52 chromosomes), including the cytogenetic mapping of repetitive DNAs such as telomeric sequences (TTAGGG)n, microsatellites and retrotransposons. A remarkable heterochromatic segment on the W chromosome was observed with a preferential accumulation of (CAC)10, (CAG)10, (CGG)10, (GAA)10 and (TA)15. The retrotransposons Rex1 and Rex3 showed a general distribution pattern in the chromosomes, and Rex6 showed a different distribution on the W chromosome. The telomeric repeat (TTAGGG)n was highly evident in both telomeres of all chromosomes without the occurrence of ITS. Thus, the differentiation of the W chromosome of T. trifurcatus is clearly associated with the formation of heterochromatin and different types of repetitive DNA, suggesting that these elements had a prominent role in this evolutionary process.

Collaboration


Dive into the Marcelo de Bello Cioffi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cassia Fernanda Yano

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Wagner Franco Molina

Federal University of Rio Grande do Norte

View shared research outputs
Top Co-Authors

Avatar

Ezequiel Aguiar de Oliveira

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tariq Ezaz

University of Canberra

View shared research outputs
Top Co-Authors

Avatar

Petr Ráb

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliana Feldberg

National Council for Scientific and Technological Development

View shared research outputs
Researchain Logo
Decentralizing Knowledge