Marcelo Einicker-Lamas
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo Einicker-Lamas.
Cell Biology and Toxicology | 2010
Flavia Mazzoli-Rocha; Silviane Fernandes; Marcelo Einicker-Lamas; Walter A. Zin
This review reports the role of oxidative stress in impairing the function of lung exposed to particulate matter (PM). PM constitutes a heterogeneous mixture of various types of particles, many of which are likely to be involved in oxidative stress induction and respiratory diseases. Probably, the ability of PM to cause oxidative stress underlies the association between increased exposure to PM and exacerbations of lung disease. Mostly because of their large surface area, ultrafine particles have been shown to cause oxidative stress and proinflammatory effects in different in vivo and in vitro studies. Particle components and surface area may act synergistically inducing lung inflammation. In this vein, reactive oxygen species elicited upon PM exposure have been shown to activate a number of redox-responsive signaling pathways and Ca2+ influx in lung target cells that are involved in the expression of genes that modulate relevant responses to lung inflammation and disease.
Environmental Pollution | 2002
Marcelo Einicker-Lamas; Gustavo Antunes Mezian; Thiago Benevides Fernandes; Fabio Leandro S. Silva; Flávio Guerra; Kildare Miranda; Márcia Attias; Mecia M. Oliveira
We have observed the effect of copper and zinc on the biology of Euglena gracilis. The cells displayed different sensitivities to these metals, as the apparent LC50 for Cu2+ was 0.22 mM, and for Zn2+ it was 0.88 mM. While Zn2+ was able to increase cell proliferation even at 0.1 mM, the minimal CuCl2 concentration tested (0.02 mM) was sufficient to impair cell division. Higher concentrations of these metals not only inhibited cell division in a concentration-dependent manner, but also interfered with the metabolism of E. gracilis. A higher accumulation of proteins and lipids per cell was observed at the DI50 concentration for metal-treated cells. These results suggest that the test concentration of both metals leads to a failure in completing cell division. Ultrastructural analysis indicated a chloroplast disorganization in copper-treated cells, as well as the presence of electron dense granules with different shapes and sizes inside vacuoles. Microanalysis of these granules indicated an accumulation of copper, thus suggesting a detoxification role played by the vacuoles. These results indicate that E. gracilis is an efficient biological model for the study of metal poisoning in eukaryotic cells. They also indicate that copper and zinc (copper being more poisonous) had an overall toxic effect on E. gracilis and that part of the effect can be ascribed to defects in the structure of chloroplast membranes.
Biology of the Cell | 2010
Flávia Sarmento Vieira; Gladys Corrêa; Marcelo Einicker-Lamas; Robson Coutinho-Silva
The lipid raft hypothesis proposed that these microdomains are small (10–200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Journal of Leukocyte Biology | 2006
Elena B. Lasunskaia; Mariana N. N. Campos; Marcelle R. M. de Andrade; Renato A. DaMatta; Thereza L. Kipnis; Marcelo Einicker-Lamas; Wilmar Dias da Silva
Macrophage migration and adhesion are important for the control of mycobacterial infection and are critically dependent on the reorganization of the cytoskeleton. Mycobacteria elicit rapid morphological changes, such as cell spreading, a process relevant to in vivo changes of macrophage shape during extravasation and migration. In this study, we investigated the BCG mycobacteria‐induced signaling events leading to macrophage cytoskeletal rearrangements employing specific pharmacological inhibitors to suppress distinct kinase pathways known to be elicited by infection. Viable or lysed mycobacteria, as well as purified cell wall lipoprotein p19, TLR2 agonist, induced RAW264.7 cells to extend actin‐rich pseudopods, which impart radial spreading within 3 h, leading later to persistent cell polarization. BCG induced rapid activation of phosphatidylinositol 3‐kinase, PI3K, activation that was recruited to the activated TLR2 receptor. TLR2‐ neutralizing antibody inhibited macrophage spreading and PI3K activation induced by p19. Additionally, BCG induced spreading and polarization of bone marrow‐derived macrophages from TLR2‐ expressing mice in contrast to their TLR2‐knockout counterparts. Neither MEK1/ERK, p38 MAPK, nor NF‐κB activation were important for the early cytoskeletal rearrangements observed, although suppression of these pathways is known to inhibit chemokine secretion by activated macrophages. Β2‐integrins blockade with a corresponding antibody inhibited macrophage spreading and polarization but had no effect on pseudopodia protrusions demonstrating the downstream position of integrin‐mediated adhesion in PI3K‐ dependent signaling pathway leading to the motility phenotype. The obtained data demonstrate that the direct effect of mycobacteria on macrophage shape might be mediated through TLR2‐dependent PI3K activation.
Stem Cells and Development | 2014
Rafael S. Lindoso; Federica Collino; Stefania Bruno; Dayana S. Araujo; Julliana F. Sant'Anna; Ciro Tetta; Paolo Provero; Peter J. Quesenberry; Adalberto Vieyra; Marcelo Einicker-Lamas; Giovanni Camussi
The mechanisms involved in renal repair by mesenchymal stromal cells (MSCs) are not entirely elucidated. The paracrine secretion of bioactive molecules has been implicated in the protective effects. Besides soluble mediators, MSCs have been shown to release extracellular vesicles (EVs), involved in renal repair process for different injury models. EVs have been shown to mediate communication between cells through the transference of several molecules, like protein, bioactive lipids, mRNA, and microRNAs (miRNAs). The miRNAs are noncoding RNAs that posttranscriptionally modulate gene expression and are involved in the regulation of several cellular processes, including those related to repair. The aim of the present study was to investigate the role of MSC-EVs in the modulation of miRNAs inside renal proximal tubular epithelial cells (PTECs) in an in vitro model of ischemia-reperfusion injury induced by ATP depletion. In this model we evaluated whether changes in miRNA expression were dependent on direct miRNA transfer or on transcription induction by MSC-EVs. The obtained results showed an enhanced incorporation of MSC-EVs in injured PTECs with protection from cell death. This biological effect was associated with EV-mediated miRNA transfer and with transcriptional modulation of miRNAs expressed by injured PTECs. Prediction of miRNA targets showed that miRNAs modulated in PTECs are involved in process of renal recovery with downregulation of coding-mRNAs associated with apoptosis, cytoskeleton reorganization, and hypoxia, such as CASP3 and 7, SHC1 and SMAD4. In conclusion, these results indicate that MSC-EVs may transfer and modulate the expression of several miRNAs involved in the repair and recovery process in PTECs.
Regulatory Peptides | 2005
L.B.A. Rangel; A.G. Lopes; L.S.M. Lara; T.L.G. Carvalho; I.V. Silva; Mecia M. Oliveira; Marcelo Einicker-Lamas; Adalberto Vieyra; L. Nogaroli; Celso Caruso-Neves
In previous papers we showed that Ang II increases the proximal tubule Na+-ATPase activity through AT1/PKC pathway [L.B. Rangel, C. Caruso-Neves, L.S. Lara, A.G. Lopes, Angiotensin II stimulates renal proximal tubule Na+-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316, L.B.A. Rangel, A.G. Lopes, L.S. Lara, C. Caruso-Neves, Angiotensin II stimulates renal proximal tubule Na+)-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316]. In the present paper, we study the involvement of PI-PLCbeta on the stimulatory effect of angiotensin II (Ang II) on the proximal tubule Na+-ATPase activity. Western blotting assays, using a polyclonal antibody for PI-PLCbeta, show a single band of about 150 KDa, which correspond to PI-PLCbeta isoforms. Ang II induces a rapid decrease in PIP2 levels, a PI-PLCbeta substrate, being the maximal effect observed after 30 s incubation. This effect of Ang II is completely abolished by 5 x 10(-8) M U73122, a specific inhibitor of PI-PLCbeta. In this way, the effect of 10(-8) M Ang II on the proximal tubule basolateral membrane (BLM) Na+-ATPase activity is completely abolished by 5 x 10(-8) M U73122. The increase in diacylglycerol (DAG) concentration, an product of PI-PLCbeta, from 0.1 to 10 nM raises the Na+-ATPase activity from 6.1+/-0.2 to 13.1+/-1.8 nmol Pi mg(-1) min(-1). This effect is similar and non-additive to that observed with Ang II. Furthermore, the stimulatory effect of 10 nM DAG is completely reversed by 10(-8) M calphostin C (Calph C), an inhibitor of PKC. Taken together these data indicate that Ang II stimulates the Na+-ATPase activity of proximal tubule BLM through a PI-PLCbeta/PKC pathway.
Cell and Tissue Research | 2005
Claudia Mermelstein; Débora M. Portilho; Rommel B. Medeiros; Aline R. Matos; Marcelo Einicker-Lamas; Giovane G. Tortelote; Adalberto Vieyra; Manoel Luis Costa
The formation of a skeletal muscle fiber begins with the withdrawal of committed mononucleated precursors from the cell cycle. These myoblasts elongate while aligning with each other, guided by recognition between their membranes. This step is followed by cell fusion and the formation of long striated multinucleated myotubes. We used methyl-β-cyclodextrin (MCD) in primary cultured chick skeletal muscle cells to deplete membrane cholesterol and investigate its role during myogenesis. MCD promoted a significant increase in the expression of troponin T, enhanced myoblast fusion, and induced the formation of large multinucleated myotubes with nuclei being clustered centrally and not aligned at the cell periphery. MCD myotubes were striated, as indicated by sarcomeric α-actinin staining, and microtubule and desmin filament distribution was not altered. Pre-fusion MCD-treated myoblasts formed large aggregates, with cadherin and β-catenin being accumulated in cell adhesion contacts. We also found that the membrane microdomain marker GM1 was not present as clusters in the membrane of MCD-treated myoblasts. Our data demonstrate that cholesterol is involved in the early steps of skeletal muscle differentiation.
Eukaryotic Cell | 2006
Ivone de Andrade Rosa; Marcelo Einicker-Lamas; Róbson Roney Bernardo; Lucia Mendonça Previatto; Ronaldo Mohana-Borges; José Andrés Morgado-Díaz; Marlene Benchimol
ABSTRACT Hydrogenosomes are found in organisms that lack typical mitochondria. Cardiolipin is a phospholipid located exclusively in bacterial membranes and the inner membrane of mitochondria. Here we show, by cell fractionation, thin-layer chromatography, high-pressure liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry that hydrogenosomes of Tritrichomonas foetus, a cattle vaginal parasite, contain cardiolipin, which is strong evidence for its endosymbiotic origin.
Cellular Physiology and Biochemistry | 2011
Rafael S. Lindoso; Dayana S. Araujo; Juliana Adão-Novaes; Rafael M. Mariante; Karine S. Verdoorn; Lucianne Fragel-Madeira; Celso Caruso-Neves; Rafael Linden; Adalberto Vieyra; Marcelo Einicker-Lamas
Background/Aims: Renal tubular cells are the main target of ischemic insult associated with acute renal injury. Low oxygen and nutrient supplies result in ATP depletion, leading to cell death and loss of renal function. A possible mechanism by which bone marrow-derived cells support renal tissue regeneration relies on the capacity of mononuclear cells (BMMC), particularly mesenchymal stem cells (MSC), to secrete paracrine factors that mediate support for kidney regeneration. Methods: BMMC/MSC and renal cells (LLC-PK1 from pig and IRPTC from rat) were co-cultured under stressful conditions (ATP depletion and/or serum free starvation), physically separated by a microporous membrane (0.4 µm), was used to determine whether bone marrow-derived cells can interact with renal cells in a paracrine manner. Results: This interaction resulted in stimulation of renal cell proliferation and the arrest of cell death. MSC elicit effective responses in renal cells in terms of stimulating proliferation and protection. Such effects are observed in renal cells co-cultured with rat BMMC/MSC, an indication that paracrine mechanisms are not entirely species-specific. Conclusion: The paracrine action of BMMC/MSC was influenced by a renal cell stimulus released during stress, indicating that cross-talk with injured cells is required for renal regeneration supported by bone marrow-derived cells.
FEBS Letters | 2004
Giovane G. Tortelote; Rafael H.F. Valverde; Thiago Lemos; Ad ılson Guilherme; Marcelo Einicker-Lamas; Adalberto Vieyra
Plasma membrane Ca2+‐ATPase is involved in the fine‐tuned regulation of intracellular Ca2+. In this study, the presence of Ca2+‐ATPase in caveolae from kidney basolateral membranes was investigated. With the use of a discontinuous sucrose gradient, we show that Ca2+‐ATPase is exclusively located and fully active in caveolin‐containing microdomains. Treatment with methyl‐β‐cyclodextrin – a cholesterol chelator – leads to a spreading of both caveolin and completely inactive Ca2+‐ATPase toward high‐density fractions. These data support the view that Ca2+ fluxes mediated by Ca2+‐ATPase in kidney epithelial cells occur only in caveolae, being strictly dependent on the integrity of these microdomains.