Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcelo I. Guzman is active.

Publication


Featured researches published by Marcelo I. Guzman.


Journal of Physical Chemistry A | 2009

Optical absorptivity versus molecular composition of model organic aerosol matter.

Angela Rincon; Marcelo I. Guzman; Michael R. Hoffmann; A. J. Colussi

Aerosol particles affect the Earths energy balance by absorbing and scattering radiation according to their chemical composition, size, and shape. It is generally believed that their optical properties could be deduced from the molecular composition of the complex organic matter contained in these particles, a goal pursued by many groups via high-resolution mass spectrometry, although: (1) absorptivity is associated with structural chromophores rather than with molecular formulas, (2) compositional space is a small projection of structural space, and (3) mixtures of polar polyfunctional species usually exhibit supramolecular interactions. Here we report a suite of experiments showing that the photolysis of aqueous pyruvic acid (a proxy for aerosol alpha-dicarbonyls absorbing at lambda > 300 nm) generates mixtures of identifiable aliphatic polyfunctional oligomers that develop absorptions in the visible upon standing in the dark. These absorptions and their induced fluorescence emissions can be repeatedly bleached and retrieved without carbon loss or ostensible changes in the electrospray mass spectra of the corresponding mixtures and display unambiguous signatures of supramolecular effects. The nonlinear additivity of the properties of the components of these mixtures supports the notion that full structural speciation is insufficient and possibly unnecessary for understanding the optical properties of aerosol particles and their responses to changing ambient conditions.


Atmospheric Chemistry and Physics | 2016

Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

Nga L. Ng; Steven S. Brown; A. T. Archibald; Elliot Atlas; R. C. Cohen; J. N. Crowley; Douglas A. Day; Neil M. Donahue; Juliane L. Fry; Hendrik Fuchs; Robert J. Griffin; Marcelo I. Guzman; Hartmut Herrmann; Alma Hodzic; Yoshiteru Iinuma; Jose L. Jimenez; Astrid Kiendler-Scharr; Ben H. Lee; Deborah Luecken; Jingqiu Mao; Robert McLaren; Anke Mutzel; Hans D. Osthoff; Bin Ouyang; B. Picquet-Varrault; U. Platt; Havala O. T. Pye; Yinon Rudich; Rebecca H. Schwantes; Manabu Shiraiwa

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.


Chemistry: A European Journal | 2009

Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases

César Menor-Salván; Dra. Marta Ruiz‐Bermejo; Marcelo I. Guzman; Susana Osuna-Esteban; Sabino Veintemillas‐Verdaguer

Herein, we report the efficient synthesis of RNA bases and functionalized s-triazines from 0.1 M urea solutions in water after subjection to freeze-thaw cycles for three weeks. The icy solution was under a reductive, methane-based atmosphere, which was subjected to spark discharges as an energy source for the first 72 h of the experiment. Analysis of the products indicates the synthesis of the s-triazines cyanuric acid, ammeline, ammelide, and melamine, the pyrimidines cytosine, uracil, and 2,4-diaminopyrimidine, and the purine adenine. An experiment performed as a control at room temperature, with the urea solution in the liquid phase and with the same atmosphere and energy source, led to the synthesis of hydantoins and insoluble tholin, but there was no evidence of the synthesis of pyrimidines or triazines. The synthesis of pyrimidines from urea is possible under a methane/nitrogen atmosphere only at low temperature, in the solid phase. The generation of both pyrimidines and triazines in comparable yields from urea, together with a possible role for triazines as alternative nucleobases, opens new perspectives on the prebiotic chemistry of informational polymers.


Astrobiology | 2009

Prebiotic Metabolism: Production by Mineral Photoelectrochemistry of α-Ketocarboxylic Acids in the Reductive Tricarboxylic Acid Cycle

Marcelo I. Guzman; Scot T. Martin

A reductive tricarboxylic acid (rTCA) cycle could have fixed carbon dioxide as biochemically useful energy-storage molecules on early Earth. Nonenzymatic chemical pathways for some steps of the rTCA cycle, however, such as the production of the alpha-ketocarboxylic acids pyruvate and alpha-ketoglutarate, remain a challenging problem for the viability of the proposed prebiotic cycle. As a class of compounds, alpha-ketocarboxylic acids have high free energies of formation that disfavor their production. We report herein the production of pyruvate from lactate and of alpha-ketoglutarate from pyruvate in the millimolar concentration range as promoted by ZnS mineral photoelectrochemistry. Pyruvate is produced from the photooxidation of lactate with 70% yield and a quantum efficiency of 0.009 at 15 degrees C across the wavelength range of 200-400 nm. The produced pyruvate undergoes photoreductive back reaction to lactate at a 30% yield and with a quantum efficiency of 0.0024. Pyruvate alternatively continues in photooxidative forward reaction to alpha-ketoglutarate with a 50% yield and a quantum efficiency of 0.0036. The remaining 20% of the carbon follows side reactions that produce isocitrate, glutarate, and succinate. Small amounts of acetate are also produced. The results of this study suggest that alpha-ketocarboxylic acids produced by mineral photoelectrochemistry could have participated in a viable enzyme-free cycle for carbon fixation in an environment where light, sulfide minerals, carbon dioxide, and other organic compounds interacted on prebiotic Earth.


Journal of Geophysical Research | 2007

Photolysis of pyruvic acid in ice: Possible relevance to CO and CO2 ice core record anomalies

Marcelo I. Guzman; Michael R. Hoffmann; and A. J. Colussi

The abnormal spikes detected in some CO and CO_2 polar ice core records indicate persistent chemical activity in glacial ice. Since CO and CO_2 spikes are correlated, and their amplitudes scale with reported CO/CO_2 yields for the photolysis of dissolved natural organic matter, a common photochemical source is implicated. Given that sufficient actinic radiation is constantly generated throughout ice by cosmic muons (Colussi and Hoffmann, 2003), it remains to be shown that the photolyses of typical organic contaminants proceed by similar mechanisms in water and ice. Here we report that the photodecarboxylation of pyruvic acid (PA, an ubiquitous ice contaminant) indeed leads to the same products nearly as efficiently in both media. CO_2 is promptly released from frozen PA/H_2O films upon illumination and continues to evolve after photolysis. By analogy with our studies in water (Guzman et al., 2006b), we infer that ^3PA* reacts with PA in ice producing CH_3C(O)C(O)O· and (CH_3C•(OH)C(O)OH) radicals. The barrierless decarboxylation, CH3C(O)C(O)O· → CH_3C(O)· + CO_2, accounts for prompt CO_2 emissions down to ∼140 K. Bimolecular radical reactions subsequently ensue in fluid molecular environments, both in water and ice, leading to metastable intermediates that decarboxylate immediately in water, but protractedly in ice. The overall quantum yield of CO_2 production in the λ ~313 nm photolysis of PA in ice at 250 K is ∼60% of that in water at 293 K. The in situ photolysis of natural organic matter is, therefore, a plausible explanation of CO and CO_2 ice core record anomalies.


Environmental Science & Technology | 2014

Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

Elizabeth A. Pillar; Robert C. Camm; Marcelo I. Guzman

Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air-water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv-6.0 ppmv O3(g) with microdroplets containing [catechol] = 1-150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon-carbon bond at the air-water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon.


Chemical Communications | 2010

Photo-production of lactate from glyoxylate: how minerals can facilitate energy storage in a prebiotic world

Marcelo I. Guzman; Scot T. Martin

The reaction of glyoxylate with carbon dioxide to produce lactate is promoted when zinc sulfide is irradiated by ultraviolet light. These results, representing a model for the action of colloidal mineral semiconductors on early Earth, complete a consecutive series that culminates in entry-point molecules of the reductive tricarboxylic acid cycle.


Journal of Physical Chemistry A | 2012

Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

Marcelo I. Guzman; Richa R. Athalye; Jose M. Rodriguez

During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO(2), NaNO(3), NaClO(4), and NaIO(4). The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f(X(-))) and their correlation with ion properties. Although no correlation exists between f(X(-)) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(X(-)), dehydration free-energy ΔG(dehyd), and polarizability α, follows the order: R(X(-))(-2) > R(X(-))(-1) > R(X(-)) > ΔG(dehyd) > α. The same pure physical process is observed in H(2)O and D(2)O. The factor f(X(-)) does not change with pH (6.8-8.6), counterion (Li(+), Na(+), K(+), and Cs(+)) substitution effects, or solvent polarity changes in methanol- and ethanol-water mixtures (0 ≤ x(H(2)O) ≤ 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I(-) on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I(-) < Br(-) < Cl(-) over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.


Journal of Physical Chemistry A | 2015

Heterogeneous Oxidation of Catechol.

Elizabeth A. Pillar; Ruixin Zhou; Marcelo I. Guzman

Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air-solid interface under variable relative humidity (RH = 0-90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10(-6) occurs for 90% RH. Upon exposure of ca. 104-μm thick catechol films to O3(g) mixing ratios between 230 ppbv and 25 ppmv, three main reaction pathways are observed. (1) The cleavage of the 1,2 carbon-carbon bond at the air-solid interface resulting in the formation of cis,cis-muconic acid via primary ozonide and hydroperoxide intermediates. Further direct ozonolysis of cis,cis-muconic yields glyoxylic, oxalic, crotonic, and maleic acids. (2) A second pathway is evidenced by the presence of Baeyer-Villiger oxidation products including glutaconic 4-hydroxy-2-butenoic and 5-oxo-2-pentenoic acids during electrospray ionization mass spectrometry (MS) and ion chromatography MS analyses. (3) Finally, indirect oxidation by in situ produced hydroxyl radical (HO(•)) results in the generation of semiquinone radical intermediates toward the synthesis of polyhydoxylated aromatic rings such as tri-, tetra-, and penta-hydroxybenzene. Remarkably, heavier polyhydroxylated biphenyl and terphenyl products present in the extracted oxidized films result from coupling reactions of semiquinones of catechol and its polyhydroxylated rings. The direct ozonolysis of 1,2,3- and 1,2,4-trihydroxybenezene yields 2- and 3-hydroxy-cis,cis-muconic acid, respectively. The production of 2,4- or 3,4-dihdroxyhex-2-enedioic acid is proposed to result from the sequential processing of cis,cis-muconic acid, 2- and 3-hydroxy-cis,cis-muconic acid. Overall, these reactions contribute precursors to form aqueous SOA from aromatics in atmospheric aerosols and brown clouds.


Environmental Science & Technology | 2013

Conversion of Iodide to Hypoiodous Acid and Iodine in Aqueous Microdroplets Exposed to Ozone

Elizabeth A. Pillar; Marcelo I. Guzman; Jose M. Rodriguez

Halides are incorporated into aerosol sea spray, where they start the catalytic destruction of ozone (O3) over the oceans and affect the global troposphere. Two intriguing environmental problems undergoing continuous research are (1) to understand how reactive gas phase molecular halogens are directly produced from inorganic halides exposed to O3 and (2) to constrain the environmental factors that control this interfacial process. This paper presents a laboratory study of the reaction of O3 at variable iodide (I(-)) concentration (0.010-100 μM) for solutions aerosolized at 25 °C, which reveal remarkable differences in the reaction intermediates and products expected in sea spray for low tropospheric [O3]. The ultrafast oxidation of I(-) by O3 at the air-water interface of microdroplets is evidenced by the appearance of hypoiodous acid (HIO), iodite (IO2(-)), iodate (IO3(-)), triiodide (I3(-)), and molecular iodine (I2). Mass spectrometry measurements reveal an enhancement (up to 28%) in the dissolution of gaseous O3 at the gas-liquid interface when increasing the concentration of NaI or NaBr from 0.010 to 100 μM. The production of iodine species such as HIO and I2 from NaI aerosolized solutions exposed to 50 ppbv O3 can occur at the air-water interface of sea spray, followed by their transfer to the gas-phase, where they contribute to the loss of tropospheric ozone.

Collaboration


Dive into the Marcelo I. Guzman's collaboration.

Top Co-Authors

Avatar

Michael R. Hoffmann

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. J. Colussi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruixin Zhou

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

and A. J. Colussi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge