Marcelo L. Actis
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo L. Actis.
eLife | 2013
Hari B. Kamadurai; Yu Qiu; Alan Deng; Joseph S. Harrison; Chris MacDonald; Marcelo L. Actis; Patrick Rodrigues; Darcie J. Miller; Judith Souphron; Steven M. Lewis; Igor Kurinov; Naoaki Fujii; Michal Hammel; Robert C. Piper; Brian Kuhlman; Brenda A. Schulman
Ubiquitination by HECT E3 enzymes regulates myriad processes, including tumor suppression, transcription, protein trafficking, and degradation. HECT E3s use a two-step mechanism to ligate ubiquitin to target proteins. The first step is guided by interactions between the catalytic HECT domain and the E2∼ubiquitin intermediate, which promote formation of a transient, thioester-bonded HECT∼ubiquitin intermediate. Here we report that the second step of ligation is mediated by a distinct catalytic architecture established by both the HECT E3 and its covalently linked ubiquitin. The structure of a chemically trapped proxy for an E3∼ubiquitin-substrate intermediate reveals three-way interactions between ubiquitin and the bilobal HECT domain orienting the E3∼ubiquitin thioester bond for ligation, and restricting the location of the substrate-binding domain to prioritize target lysines for ubiquitination. The data allow visualization of an E2-to-E3-to-substrate ubiquitin transfer cascade, and show how HECT-specific ubiquitin interactions driving multiple reactions are repurposed by a major E3 conformational change to promote ligation. DOI: http://dx.doi.org/10.7554/eLife.00828.001
Nature Genetics | 2015
Steven W. Paugh; Erik Bonten; Daniel Savic; Laura B. Ramsey; William E. Thierfelder; Prajwal Gurung; R. K. Subbarao Malireddi; Marcelo L. Actis; Anand Mayasundari; Jaeki Min; David R. Coss; Lucas T. Laudermilk; John C. Panetta; J. Robert Mccorkle; Yiping Fan; Kristine R. Crews; Gabriele Stocco; Mark R. Wilkinson; Antonio M. Ferreira; Cheng Cheng; Wenjian Yang; Seth E. Karol; Christian A. Fernandez; Barthelemy Diouf; Colton Smith; J. Kevin Hicks; Alessandra Zanut; Audrey Giordanengo; Daniel Crona; Joy J. Bianchi
Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Nicholas Brown; Ryan VanderLinden; Edmond R. Watson; Renping Qiao; Christy Rani R. Grace; Masaya Yamaguchi; Florian Weissmann; Jeremiah J. Frye; Prakash Dube; Shein Ei Cho; Marcelo L. Actis; Patrick Rodrigues; Naoaki Fujii; Jan-Michael Peters; Holger Stark; Brenda A. Schulman
Significance The anaphase-promoting complex/cyclosome (APC) is a multisubunit RING E3 ubiquitin (Ub) ligase that regulates mitosis, meiosis, and numerous facets of neurobiology by targeting key regulatory proteins for Ub-mediated degradation. Despite great importance, it remains unclear how APC, or most of the other 600 RING E3s in humans, targets Ub to lysines in disordered substrates. Here, we report the structural and molecular basis for substrate ubiquitination by APC and its partner E2, UBCH10. UBCH10 is recruited to APC, activated for ubiquitination, and positioned for substrate targeting through multisite interactions with the APC cullin–RING core. We propose that many RING E3–E2 assemblies work similarly, with multisite interactions establishing specificity, harnessing ubiquitination machineries to accelerate searching for target lysines, and facilitating regulation. For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2∼Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaborates with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING–E2∼Ub catalytic modules such as APC11–UBCH10∼Ub collide with distally tethered disordered substrates remains poorly understood. We report structural mechanisms of UBCH10 recruitment to APCCDH1 and substrate ubiquitination. Unexpectedly, in addition to binding APC11’s RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APCCDH1–UBCH10∼Ub–substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin–RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin–RING–E2 interactions establish APC’s specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. We propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3–E2∼Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.
Journal of Biological Chemistry | 2014
Akira Inoue; Sotaro Kikuchi; Asami Hishiki; Youming Shao; Richard J. Heath; Benjamin J. Evison; Marcelo L. Actis; Christine E. Canman; Hiroshi Hashimoto; Naoaki Fujii
Background: Lys-164-monoubiquitinated PCNA is essential for interstrand DNA cross-link (ICL) repair. Results: A small molecule, T2AA, bi-molecularly binds to PCNA at a PIP-box cavity and close to Lys-164. T2AA inhibited monoubiquitinated PCNA interactions and ICL repair and enhanced DNA double strand breaks. Conclusion: An inhibitor of monoubiquitinated PCNA inhibits ICL repair. Significance: Inhibition of monoubiquitinated PCNA could improve chemotherapeutic efficacy. Small molecule inhibitors of proliferating cell nuclear antigen (PCNA)/PCNA interacting protein box (PIP-Box) interactions, including T2 amino alcohol (T2AA), inhibit translesion DNA synthesis. The crystal structure of PCNA in complex with T2AA revealed that T2AA bound to the surface adjacent to the subunit interface of the homotrimer of PCNA in addition to the PIP-box binding cavity. Because this site is close to Lys-164, which is monoubiquitinated by RAD18, we postulated that T2AA would affect monoubiquitinated PCNA interactions. Binding of monoubiquitinated PCNA and a purified pol η fragment containing the UBZ and PIP-box was inhibited by T2AA in vitro. T2AA decreased PCNA/pol η and PCNA/REV1 chromatin colocalization but did not inhibit PCNA monoubiquitination, suggesting that T2AA hinders interactions of pol η and REV1 with monoubiquitinated PCNA. Interstrand DNA cross-links (ICLs) are repaired by mechanisms using translesion DNA synthesis that is regulated by monoubiquitinated PCNA. T2AA significantly delayed reactivation of a reporter plasmid containing an ICL. Neutral comet analysis of cells receiving T2AA in addition to cisplatin revealed that T2AA significantly enhanced formation of DNA double strand breaks (DSBs) by cisplatin. T2AA promoted colocalized foci formation of phospho-ATM and 53BP1 and up-regulated phospho-BRCA1 in cisplatin-treated cells, suggesting that T2AA increases DSBs. When cells were treated by cisplatin and T2AA, their clonogenic survival was significantly less than that of those treated by cisplatin only. These findings show that the inhibitors of monoubiquitinated PCNA chemosensitize cells by inhibiting repair of ICLs and DSBs.
Bioorganic & Medicinal Chemistry | 2013
Marcelo L. Actis; Akira Inoue; Benjamin J. Evison; S. Scott Perry; Chandanamali Punchihewa; Naoaki Fujii
Proliferating cell nuclear antigen (PCNA) is an essential component for DNA replication and DNA damage response. Numerous proteins interact with PCNA through their short sequence called the PIP-box to be promoted to their respective functions. PCNA supports translesion DNA synthesis (TLS) by interacting with TLS polymerases through PIP-box interaction. Previously, we found a novel small molecule inhibitor of the PCNA/PIP-box interaction, T2AA, which inhibits DNA replication in cells. In this study, we created T2AA analogues and characterized them extensively for TLS inhibition. Compounds that inhibited biochemical PCNA/PIP-box interaction at an IC50 <5 μM inhibited cellular DNA replication at 10 μM as measured by BrdU incorporation. In cells lacking nucleotide-excision repair activity, PCNA inhibitors inhibited reactivation of a reporter plasmid that was globally damaged by cisplatin, suggesting that the inhibitors blocked the TLS that allows replication of the plasmid. PCNA inhibitors increased γH2AX induction and cell viability reduction mediated by cisplatin. Taken together, these findings suggest that inhibitors of PCNA/PIP-box interaction could chemosensitize cells to cisplatin by inhibiting TLS.
ChemBioChem | 2015
Chandrima Sinha; Weiqiang Zhang; Chang Suk Moon; Marcelo L. Actis; Sunitha Yarlagadda; Kavisha Arora; Koryse Woodroofe; John P. Clancy; Songbai Lin; Assem Ziady; Raymond A. Frizzell; Naoaki Fujii; Anjaparavanda P. Naren
Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX‐809 has been reported to facilitate the folding and trafficking of F508del‐CFTR and augment its channel function. The mechanism of action of VX‐809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX‐809: does it bind CFTR directly in order to exert its action? We synthesized two VX‐809 derivatives, ALK‐809 and SUL‐809, that possess an alkyne group and retain the rescue capacity of VX‐809. By using CuI‐catalyzed click chemistry, we provide evidence that the VX‐809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF.
Bioorganic & Medicinal Chemistry | 2015
Naoaki Fujii; Benjamin J. Evison; Marcelo L. Actis; Akira Inoue
Cells have evolved complex biochemical pathways for DNA interstrand crosslink (ICL) removal. Despite the chemotherapeutic importance of ICL repair, there have been few attempts to identify which mechanistic DNA repair inhibitor actually inhibits ICL repair. To identify such compounds, a new and robust ICL repair assay was developed using a novel plasmid that contains synthetic ICLs between a CMV promoter region that drives transcription and a luciferase reporter gene, and an SV40 origin of replication and the large T antigen (LgT) gene that enables self-replication in mammalian cells. In a screen against compounds that are classified as inhibitors of DNA repair or synthesis, the reporter generation was exquisitely sensitive to ribonucleotide reductase (RNR) inhibitors such as gemcitabine and clofarabine, but not to inhibitors of PARP, ATR, ATM, Chk1, and others. The effect was observed also by siRNA downregulation of RNR. Moreover, the reporter generation was also particularly sensitive to 3-AP, a non-nucleoside RNR inhibitor, but not significantly sensitive to DNA replication stressors, suggesting that the involvement of RNR in ICL repair is independent of incorporation of a nucleotide RNR inhibitor into DNA to induce replication stress. The reporter generation from a modified version of the plasmid that lacks the LgT-SV40ori motif was also adversely affected by RNR inhibitors, further indicating a role for RNR in ICL repair that is independent of DNA replication. Intriguingly, unhooking of cisplatin-ICL from nuclear DNA was significantly inhibited by low doses of gemcitabine, suggesting an unidentified functional role for RNR in the process of ICL unhooking. The assay approach could identify other molecules essential for ICLR in quantitative and flexible manner.
Bioorganic & Medicinal Chemistry | 2014
Benjamin J. Evison; Marcelo L. Actis; Sean Z. Wu; Youming Shao; Richard J. Heath; Lei Yang; Naoaki Fujii
Proliferating cell nuclear antigen (PCNA) assumes an indispensable role in supporting cellular DNA replication and repair by organizing numerous protein components of these pathways via a common PCNA-interacting sequence motif called a PIP-box. Given the multifunctional nature of PCNA, the selective inhibition of PIP-box-mediated interactions may represent a new strategy for the chemosensitization of cancer cells to existing DNA-directed therapies; however, promiscuous blockage of these interactions may also be universally deleterious. To address these possibilities, we utilized a chemical strategy to irreversibly block PIP-box-mediated interactions. Initially, we identified and validated PCNA methionine 40 (M40) and histidine 44 (H44) as essential residues for PCNA/PIP-box interactions in general and, more specifically, for efficient PCNA loading onto chromatin within cells. Next, we created a novel small molecule incorporating an electrophilic di-chloro platinum moiety that preferentially alkylated M40 and H44 residues. The compound, designated T2Pt, covalently cross-linked wild-type but not M40A/H44A PCNA, irreversibly inhibited PCNA/PIP-box interactions, and mildly alkylated plasmid DNA in vitro. In cells, T2Pt persistently induced cell cycle arrest, activated ATR-Chk1 signaling and modestly induced DNA strand breaks, features typical of cellular replication stress. Despite sustained activation of the replication stress response by the compound and its modestly genotoxic nature, T2Pt demonstrated little activity in clonogenic survival assays as a single agent, yet sensitized cells to cisplatin. The discovery of T2Pt represents an original effort directed at the development of irreversible PCNA inhibitors and sets the stage for the discovery of analogues more selective for PCNA over other cellular nucleophiles.
Bioorganic & Medicinal Chemistry | 2016
Marcelo L. Actis; Nigus D. Ambaye; Benjamin J. Evison; Youming Shao; Murugendra Vanarotti; Akira Inoue; Ezelle T. McDonald; Sotaro Kikuchi; Richard J. Heath; Kodai Hara; Hiroshi Hashimoto; Naoaki Fujii
DNA interstrand crosslink (ICL) repair (ICLR) has been implicated in the resistance of cancer cells to ICL-inducing chemotherapeutic agents. Despite the clinical significance of ICL-inducing chemotherapy, few studies have focused on developing small-molecule inhibitors for ICLR. The mammalian DNA polymerase ζ, which comprises the catalytic subunit REV3L and the non-catalytic subunit REV7, is essential for ICLR. To identify small-molecule compounds that are mechanistically capable of inhibiting ICLR by targeting REV7, high-throughput screening and structure-activity relationship (SAR) analysis were performed. Compound 1 was identified as an inhibitor of the interaction of REV7 with the REV7-binding sequence of REV3L. Compound 7 (an optimized analog of compound 1) bound directly to REV7 in nuclear magnetic resonance analyses, and inhibited the reactivation of a reporter plasmid containing an ICL in between the promoter and reporter regions. The normalized clonogenic survival of HeLa cells treated with cisplatin and compound 7 was lower than that for cells treated with cisplatin only. These findings indicate that a small-molecule inhibitor of the REV7/REV3L interaction can chemosensitize cells by inhibiting ICLR.
Biopolymers | 2011
Marcelo L. Actis; Michele C. Connelly; Anand Mayasundari; Chandanamali Punchihewa; Naoaki Fujii
We have previously reported ketoprofen amide compounds as inhibitors of GLI1-mediated transcription, an essential down-stream element of the Hedgehog (Hh) pathway. These compounds inhibited Gli-luciferase reporter in C3H10T1/2 cells that were exogenously transfected with GLI1 and in Rh30 cells that endogenously overexpress GLI1. Here we have designed new derivatives of these compounds aiming to explore the structure-activation relationship (SAR). By replacing the ketone carbonyl group of the ketoprofen moiety with an ether, amide, sulfonamide, or sulfone, we found several new compounds that are equipotent to the ketoprofen amide compounds. Among them, sulfone 30 inhibited Gli-luciferase reporter in C3H10T1/2 cells that were exogenously transfected with GLI1 and in Rh30 cells that endogenously overexpress GLI1.