Marcelo Maraschin
Universidade Federal de Santa Catarina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo Maraschin.
Journal of Agricultural and Food Chemistry | 2009
Elayne Cristina de Morais; Aliny Stefanuto; Graziela Alessandra Klein; Brunna Cristina Bremer Boaventura; Fernanda de Andrade; Elisabeth Wazlawik; Patrícia Faria Di Pietro; Marcelo Maraschin; Edson Luiz da Silva
The objective of this study was to verify the effect of yerba mate (Ilex paraguariensis) consumption on lipid and lipoprotein levels in humans. One hundred and two individuals participated of this single-blind controlled trial. Normolipidemic (n = 15), dyslipidemic (n = 57), and hypercholesterolemic subjects on long-term statin therapy (n = 30) ingested 330 mL, 3 times/day, of green or roasted yerba mate infusions for 40 days. In normolipidemic subjects, yerba mate consumption reduced LDL-cholesterol by 8.7% (p < 0.05). Compared with the baseline period, yerba mate intake by dyslipidemic individuals for 20 and 40 days lowered LDL-cholesterol by 8.1 and 8.6% (p < 0.001) and non-HDL cholesterol by 5.4 and 6.5% (p < 0.01). After 20 days of yerba mate intake, apolipoprotein B was reduced by 6.0% (p < 0.05) and HDL-cholesterol was increased by 4.4% (p < 0.01). In all participants triglyceride levels remained unchanged. The consumption of yerba mate by hypercholesterolemic individuals on statin therapy promoted additional 10.0 and 13.1% reductions in LDL-C after 20 and 40 days, respectively (p < 0.001) and increased HDL-cholesterol by 6.2% after 40 days (p < 0.05). It was thus concluded that intake of yerba mate infusion improved the lipid parameters in normolipidemic and dyslipidemic subjects and provided an additional LDL-cholesterol reduction in hypercholesterolemic subjects on statin treatment, which may reduce the risk for cardiovascular diseases.
Journal of Biotechnology | 2013
Daniela A. Oliveira; Ana Augusta Salvador; Artur Smânia; Elza de Fátima Albino Smânia; Marcelo Maraschin; Sandra R.S. Ferreira
The possibility of increasing the aggregated value of the huge amount of residues generated by wineries around the world foment studies using the grape pomace - the residue from the wine production, composed by seed, skin and stems - to obtain functional ingredients. Nowadays, consumers in general prefer natural and safe products mainly for food and cosmetic fields, where the supercritical fluid extraction is of great importance due to the purity of the extracts provided. Therefore, the objective of this work is to evaluate the global extraction yield, the antimicrobial activity and the composition profile of Merlot and Syrah grape pomace extracts obtained by supercritical CO2 (SC-CO2) and CO2 added with co-solvent at pressures up to 300 bar and temperatures of 50 and 60 °C. The results were compared with the ones obtained by Soxhlet and by ultrasound-assisted leaching extraction methods. The main components from the extracts, identified by HPLC, were gallic acid, p-OH-benzoic acid, vanillic acid and epicatechin. The antibacterial and antifungal activities of the extracts were evaluated using four strains of bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa) and three fungi strains (Candida albicans, Candida parapsilosis, Candida krusei). Despite lower extraction yield results, the supercritical fluid extracts presented the highest antimicrobial effectiveness compared to the other grape pomace extracts due to the presence of antimicrobial active compounds. Syrah extracts were less efficient against the microorganisms tested and Merlot extracts were more active against Gram-positive bacteria.
Talanta | 2012
Kátia S. Andrade; Ricardo T. Gonçalvez; Marcelo Maraschin; Rosa Maria Ribeiro-do-Valle; Julian Martínez; Sandra R.S. Ferreira
The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks.
Photosynthetica | 2010
Éder C. Schmidt; B. G. Nunes; Marcelo Maraschin; Zenilda L. Bouzon
Kappaphycus alvarezii is a seaweed of great economic importance for the extraction of kappa carrageenan from its cell walls. The most common strains are dark red, brown, yellow, and different gradations of green. It is known that ultraviolet radiation (UVR) affects macroalgae in many important ways, including reduced growth rate, reduction of primary productivity, and changes in cell biology and ultrastructure. Therefore, we examined the brown strain of K. alvarezii exposed to ultraviolet-B radiaton (UVBR) for 3 h per day during 28 days of cultivation. The control plants showed growth rates of 7.27% d−1, while plants exposed to UVBR grew only 4.0% d−1. Significant differences in growth rates and in phycobiliproteins between control and exposed plants were also found. Compared with control plants, phycobiliprotein contents were observed to decrease after UV-B exposure. Furthermore, the chlorophyll a (Chl a) contents decreased and showed significant differences. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included increased thickness of the cell wall and number of plastoglobuli, reduced intracellular spaces, changes in the cell contour, and destruction of chloroplast internal organization. Reaction with Toluidine Blue showed an increase in the thickness of the cell wall, and Periodic Acid-Schiff stain showed a decrease in the number of starch grains. By the significant changes in growth rates, photosynthetic contents and ultrastructual changes observed, it is clear that UVBR negatively affects intertidal macroalgae and, by extension, their economic viability.
Micron | 2010
Éder C. Schmidt; Rodrigo dos Santos; Paulo Antunes Horta; Marcelo Maraschin; Zenilda L. Bouzon
The effects of ultraviolet radiation-B (UVBR) in apical segments of the red macroalgae Gracilaria domingensis (Kützing) Sonder ex Dickie were examined in vitro. Over a period of 21 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2)s(-1) and PAR+UVBR at 1.6 Wm(-2) for 3h per day. The samples were processed for electron microscopy, as well as histochemical analysis, and growth rate, photosynthetic pigment contents and photosynthetic performance were measured. Toluidine Blue reaction showed metachromatic granulations in vacuole and lenticular thickness, while Coomassie Brilliant Blue showed a higher concentration of cytoplasmic organelles, and Periodic Acid Schiff stain showed an increase in the number of floridean starch grains. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included an increased number of plastoglobuli, changes in mitochondrial organization, destruction of chloroplast internal organization, and the disappearance of phycobilisomes. The algae cultivated under PAR-only showed growth rates of 6.0%day(-1), while algae exposed to PAR+UVBR grew only 2.8%day(-1). Compared with algae cultivated with PAR-only, the contents of photosynthetic pigments, including chlorophyll a, phycoerythrin, phycocyanin and allophycocyanin, decreased after exposure to PAR+UVBR, and significant differences were observed. Finally, analysis of these four photosynthetic parameters also showed reduction after exposure to PAR+UVBR: maximum photosynthetic rate, photosynthetic efficiency, photoinhibition and relative electron transport rate. Taken together, these findings strongly suggested that UVBR negatively affects the agarophyte G. domingensis.
Journal of Ethnopharmacology | 2015
Aline Pereira; Marcelo Maraschin
ETHNOPHARMACOLOGICAL RELEVANCE Banana is a fruit with nutritional properties and also with acclaimed therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Banana peel is known by its local and traditional use to promote wound healing mainly from burns and to help overcome or prevent a substantial number of illnesses, as depression. AIM OF THE STUDY This review critically assessed the phytochemical properties and biological activities of Musa spp fruit pulp and peel. MATERIALS AND METHODS A survey on the literature on banana (Musa spp, Musaceae) covering its botanical classification and nomenclature, as well as the local and traditional use of its pulp and peel was performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices sources of high-value compounds from secondary metabolism was also approached. RESULTS Dessert bananas and plantains are systematic classified into four sections, Eumusa, Rhodochlamys, Australimusa, and Callimusa, according to the number of chromosomes. The fruits differ only in their ploidy arrangement and a single scientific name can be given to all the edible bananas, i.e., Musa spp. The chemical composition of bananas peel and pulp comprise mostly carotenoids, phenolic compounds, and biogenic amines. The biological potential of those biomasses is directly related to their chemical composition, particularly as pro-vitamin A supplementation, as potential antioxidants attributed to their phenolic constituents, as well as in the treatment of Parkinsons disease considering their contents in l-dopa and dopamine. CONCLUSION Bananas pulp and peel can be used as natural sources of antioxidants and pro-vitamin A due to their contents in carotenoids, phenolics, and amine compounds, for instance. For the development of a phytomedicine or even an allopathic medicine, e.g., banana fruit pulp and peel could be of interest as raw materials riches in beneficial bioactive compounds.
Food Chemistry | 2014
Virgílio Gavicho Uarrota; Rodolfo Moresco; Bianca Coelho; Eduardo da Costa Nunes; Luiz Augusto Martins Peruch; Enilto de Oliveira Neubert; Miguel Rocha; Marcelo Maraschin
Cassava roots are an important source of dietary and industrial carbohydrates and suffer markedly from postharvest physiological deterioration (PPD). This paper deals with metabolomics combined with chemometric tools for screening the chemical and enzymatic composition in several genotypes of cassava roots during PPD. Metabolome analyses showed increases in carotenoids, flavonoids, anthocyanins, phenolics, reactive scavenging species, and enzymes (superoxide dismutase family, hydrogen peroxide, and catalase) until 3-5days postharvest. PPD correlated negatively with phenolics and carotenoids and positively with anthocyanins and flavonoids. Chemometric tools such as principal component analysis, partial least squares discriminant analysis, and support vector machines discriminated well cassava samples and enabled a good prediction of samples. Hierarchical clustering analyses grouped samples according to their levels of PPD and chemical compositions.
International Journal of Biological Macromolecules | 2012
Beatriz Veleirinho; Daniela Sousa Coelho; Paulo Fernando Dias; Marcelo Maraschin; Rosa Maria Ribeiro-do-Valle; José A. Lopes-da-Silva
The purpose of this study was to evaluate hybrid poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/chitosan nanofibrous mats as scaffolds for skin engineering. In vitro studies were carried out to test the potential of the scaffolds for fibroblasts adhesion, viability, and proliferation (L929 cell line). The in vivo performance was also studied in a full-thickness wound healing model. PHBV/chitosan 4:1 (w/w) exhibited a higher in vitro biocompatibility and a better ability for cell adhesion and growth, compared to PHBV/chitosan 2:3 (w/w). The in vivo assay also revealed the better performance of this scaffold, improving the wound healing process in rats.
Talanta | 2011
Natália Mezzomo; Bianca Maestri; Renata Santos; Marcelo Maraschin; Sandra R.S. Ferreira
The main residue from the shrimp processing is formed by head and carapace and represents from 40 to 50% (w/w) of the integral shrimp. The recovery of the carotenoid fraction from this residue stands for an alternative to increase its aggregated value. Therefore, the objective of this study was to use the pink shrimp waste as raw material to obtain carotenoid enriched extracts, evaluating different pre-treatments and extraction methods. The shrimp waste was supplied by a local public market (Florianópolis, SC, Brazil). The investigation of the different pre-treatments applied to the raw material shows that cooking associated with milling and drying produced the extract richest in carotenoid fraction. The extraction methods considered in this work were Soxhlet, maceration and ultrasound by means of different organic solvents and also a vegetable oil as solvent. The extracts were evaluated in terms of yield, carotenoid profile, total carotenoid content (TCC), UV-Visible scanning spectrophotometry and mid-Fourier transform infrared spectroscopy (FTIR). The results indicate that shrimp waste can provide carotenoid enriched extracts, particularly astaxanthin, in concentrations up to 252 μg(astaxanthin)g(extract)(-1). The most adequate solvents were acetone and hexane: isopropanol (50:50, v/v) used in the maceration procedure. The UV-Vis results revealed the presence of carotenoids and flavonoids in the extracts while the FTIR spectroscopy indicated the existence of fatty acids, proteins, and phenolics.
European Journal of Pharmacology | 2012
Ana Lúcia Bertarello Zeni; Andréa D.E. Zomkowski; Marcelo Maraschin; Ana Lúcia S. Rodrigues; Carla I. Tasca
Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phenolic compound present in several plants with claimed beneficial effects in prevention and treatment of disorders linked to oxidative stress and inflammation. In this study, we aimed to verify the possible antidepressant-like effect of acute oral administration of ferulic acid in the forced swimming test (FST) and tail suspension test (TST) in mice. Additionally, the mechanisms involved in the antidepressant-like action and the effects of the association of ferulic acid with the antidepressants fluoxetine, paroxetine, and sertraline in the TST were investigated. Ferulic acid produced an antidepressant-like effect in the FST and TST (0.01-10 mg/kg, p.o.), without accompanying changes in ambulation. The pretreatment of mice with WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) or ketanserin (5 mg/kg, i.p., a 5-HT(2A) receptor antagonist) was able to reverse the anti-immobility effect of ferulic acid (0.01 mg/kg, p.o.) in the TST. The combination of fluoxetine (5 mg/kg, p.o.), paroxetine (0.1 mg/kg, p.o.) or sertraline (1 mg/kg, p.o.) with a sub-effective dose of ferulic acid (0.001 mg/kg, p.o.) produced a synergistic antidepressant-like effect in the TST, without causing hyperlocomotion in the open-field test. Taken together, these results demonstrate that ferulic acid exerts antidepressant-like effect in the FST and TST in mice through modulation of the serotonergic system.