Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcelo S. Costa is active.

Publication


Featured researches published by Marcelo S. Costa.


Neuroscience | 2008

CAFFEINE PREVENTS AGE-ASSOCIATED RECOGNITION MEMORY DECLINE AND CHANGES BRAIN-DERIVED NEUROTROPHIC FACTOR AND TIROSINE KINASE RECEPTOR (TrkB) CONTENT IN MICE

Marcelo S. Costa; Paulo Henrique S. Botton; Sabrina Mioranzza; Diogo Onofre Gomes de Souza; Lisiane O. Porciúncula

The beneficial effects of caffeine on cognition are controversial in humans, whereas its benefit in rodents had been well characterized. However, most studies were performed with acute administration of caffeine and the tasks used to evaluate cognition had aversive components. Here, we evaluated adulthood administration of caffeine up to old age on recognition memory in mice using the object recognition task (ORT) and on brain-derived neurotrophic factor (BNDF) and tyrosine kinase receptor (TrkB) immunocontent in the hippocampus. Adult mice (6 months old) received either drinking water or caffeine (1 mg/mL) during 12 months. At 18 months of age both groups were tested for ORT. Our results showed that aged mice exhibited lower performance in the recognition memory compared with adults (6 months old). Furthermore, caffeine-treated mice showed similar performance to adult mice in the ORT and an improvement compared with their age-matched control mice. Caffeine also counteracted the age-related increase in BDNF and TrkB immunocontent. Our results corroborate with other studies and reinforce that caffeine consumed in adulthood may prevent recognition memory decline with aging. This preventive effect may involve a decrease in the hippocampal BDNF and TrkB immunocontent.


Brain Research Bulletin | 2012

Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment

Fernanda Cechetti; Aline de Souza Pagnussat; Paulo Valdeci Worm; Viviane Rostirolla Elsner; Juliana Ben; Marcelo S. Costa; Régis Gemerasca Mestriner; Simone Nardin Weis; Carlos Alexandre Netto

Reduction of cerebral blood flow is an important risk factor for dementia states and other brain dysfunctions. In present study, the effects of permanent occlusion of common carotid arteries (2VO), a well established experimental model of brain ischemia, on memory function were investigated, as assessed by reference and working spatial memory protocols and the object recognition task; cell damage to the hippocampus, as measured through changes in immunoreactivity for GFAP and the neuronal marker NeuN was also studied. The working hypothesis is that metabolic impairment following hypoperfusion will affect neuron and glial function and result in functional damage. Adult male Wistar rats were submitted to the modified 2VO method, with the right common carotid artery being occluded first and the left one week later, and tested seven days, three and six months after the ischemic event. A significant cognitive deficit was found in both reference and working spatial memory, as well as in the object recognition task, three and six months after surgery. Neuronal death and reactive astrogliosis were already present at 7 days and continued for up to 3 months after the occlusion; interestingly, there was no significant reduction in hippocampal volume. Present data suggests that cognitive impairment caused by brain hypoperfusion is long - lasting and persists beyond the time point of recovery from glial activation and neuronal loss.


Neurochemistry International | 2008

Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus.

Marcelo S. Costa; Paulo Henrique S. Botton; Sabrina Mioranzza; Ana Paula Ardais; Júlia Dubois Moreira; Diogo O. Souza; Lisiane O. Porciúncula

Caffeine is one of the most psychostimulants consumed all over the world that usually presents positive effects on cognition. In this study, effects of caffeine on mice performance in the object recognition task were tested in different intertrial intervals. In addition, it was analyzed the effects of caffeine on brain derived neurotrophic factor (BDNF) and its receptor, TrkB, immunocontent to try to establish a connection between the behavioral finding and BDNF, one of the neurotrophins strictly involved in memory and learning process. CF1 mice were treated during 4 consecutive days with saline (0.9g%, i.p.) or caffeine (10mg/kg, i.p., equivalent dose corresponding to 2-3 cups of coffee). Caffeine treatment was interrupted 24h before the object recognition task analysis. In the test session performed 15min after training session, caffeine-treated mice recognized more efficiently both the familiar and the novel object. In the test session performed 90min and 24h after training session, caffeine did not change the time spent in the familiar object but increased the object recognition index, when compared to control group. Western blotting analysis of hippocampus from caffeine-treated mice revealed an increase in BDNF and TrkB immunocontent, compared to their saline-matched controls. Phospho-CREB immunocontent did not change with caffeine treatment. Our results suggest that acute treatment with caffeine improves recognition memory, and this effect may be related to an increase of the BDNF and TrkB immunocontent in the hippocampus.


Journal of Alzheimer's Disease | 2013

Caffeine Consumption Prevents Memory Impairment, Neuronal Damage, and Adenosine A2A Receptors Upregulation in the Hippocampus of a Rat Model of Sporadic Dementia

Janaína Espinosa; Andreia Possatti da Rocha; Fernanda Nunes; Marcelo S. Costa; Vanessa Schein; Vanessa Kazlauckas; Eduardo Kalinine; Diogo O. Souza; Rodrigo A. Cunha; Lisiane O. Porciúncula

Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimers disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-β-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.


Behavioural Brain Research | 2010

Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice.

Paulo Henrique S. Botton; Marcelo S. Costa; Ana Paula Ardais; Sabrina Mioranzza; Diogo O. Souza; João Batista Teixeira da Rocha; Lisiane O. Porciúncula

Caffeine is a psychostimulant with positive effects on cognition. Recent studies have suggested the participation of the cholinergic system in the effects of caffeine on wakefulness. However, there are few studies assessing the contribution of cholinergic system in the cognitive enhancer properties of caffeine. In the present study, the effects of a dose and schedule of administration of caffeine that improved memory recognition were investigated on scopolamine-induced impairment of memory in adult mice. Inhibitory avoidance and novel object recognition tasks were used to assess learning and memory. Caffeine (10mg/kg, i.p.) was administered during 4 consecutive days, and the treatment was interrupted 24h before scopolamine administration (2mg/kg, i.p.). Scopolamine was administered prior to or immediately after training. Short-term and long-term memory was evaluated in both tasks. In the novel object recognition task, pre treatment with caffeine prevented the disruption of short- and long-term memory by scopolamine. In the inhibitory avoidance task, caffeine prevented short- but not long-term memory disruption by pre training administration of scopolamine. Caffeine prevented short- and long-term memory disruption by post training administration of scopolamine. Both treatments did not affect locomotor activity of the animals. These findings suggest that acute treatment with caffeine followed by its withdrawal may be effective against cholinergic-induced disruption of memory assessed in an aversive and non-aversive task. Finally, our results revealed that the cholinergic system is involved in the positive effects of caffeine on cognitive functions.


International Journal of Developmental Neuroscience | 2014

Prenatal caffeine intake differently affects synaptic proteins during fetal brain development.

Sabrina Mioranzza; Fernanda Bordignon Nunes; Daniela M. Marques; Gabriela T. Fioreze; Andréia S. Rocha; Paulo Henrique S. Botton; Marcelo S. Costa; Lisiane O. Porciúncula

Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain‐derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP‐43) and Synaptosomal‐associated Protein 25 (SNAP‐25). Besides, the estimation of NeuN‐stained nuclei (mature neurons) and non‐neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3 g/L) decreased GAP‐43 only in the hippocampus at E18. The NeuN‐stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN‐stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2012

Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats

Marcelo S. Costa; Ana Paula Ardais; Gabriela T. Fioreze; Sabrina Mioranzza; Paulo Henrique S. Botton; Luis Valmor Cruz Portela; Diogo O. Souza; Lisiane O. Porciúncula

Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2011

Blockade of adenosine A1 receptors prevents methylphenidate-induced impairment of object recognition task in adult mice

Sabrina Mioranzza; Marcelo S. Costa; Paulo Henrique S. Botton; Ana Paula Ardais; Vanessa Lague Matte; Janaína Espinosa; Diogo O. Souza; Lisiane O. Porciúncula

Methylphenidate (MPH) is the preferred treatment used for attention-deficit/hyperactivity disorder (ADHD). Recently, misuse for MPH due to its apparent cognitive enhancer properties has been reported. Adenosine is a neuromodulator known to exert influence on the dopaminergic neurotransmission, which is the main pharmacological target of MPH. We have reported that an overdosage of MPH up-regulates adenosine A(1) receptors in the frontal cortex, but this receptor was not involved in its anxiolytic effects. In this study, the role of adenosine A(1) receptor was investigated on MPH-induced effects on aversive and recognition memory in adult mice. Adult mice received acute and chronic (15 days) administration of methylphenidate (5mg/kg, i.p.), or an acute overdosage (50mg/kg, i.p) in order to model misuse. Memory was assessed in the inhibitory avoidance and object recognition task. Acute administration 5mg/kg improved whereas 50mg/kg disrupted recognition memory and decreased performance in the inhibitory avoidance task. Chronic administration did not cause any effect on memory, but decreased adenosine A(1) receptors immunocontent in the frontal cortex. The selective adenosine A(1) receptor antagonist, (DPCPX 1mg/kg, i.p.), prevented methylphenidate-triggered recognition memory impairment. Our findings showed that recognition memory rather than aversive memory was differently affected by acute administration at both doses. Memory recognition was fully impaired by the overdosage, suggesting that misuse can be harmful for cognitive functions. The adenosinergic system via A(1) receptors may play a role in the methylphenidate actions probably by interfering with dopamine-enhancing properties of this drug.


Neuroscience | 2012

The impact of the frequency of moderate exercise on memory and brain-derived neurotrophic factor signaling in young adult and middle-aged rats.

Marcelo S. Costa; Ana Paula Ardais; Gabriela T. Fioreze; Sabrina Mioranzza; Paulo Henrique S. Botton; Diogo Onofre Gomes de Souza; João Batista Teixeira da Rocha; Lisiane O. Porciúncula

The participation of the brain-derived neurotrophic factor (BDNF) in the benefits of physical exercise on cognitive functions has been widely investigated. Different from voluntary exercise, the effects of treadmill running on memory and BDNF are still controversial. Importantly, the impact of the frequency of physical exercise on memory remains still unknown. In this study, young adult and middle-aged rats were submitted to 8 weeks of treadmill running at moderate intensity and divided into 4 groups of frequency: 0, 1, 3 and 7 days/week. Aversive and recognition memory were assessed as well as the immunocontent of proBDNF, BDNF and tyrosine kinase receptor type B (TrkB) in the hippocampus. Frequencies did not modify memory in young adult animals. The frequency of 1 day/week increased proBDNF and BDNF. All frequencies decreased TrkB immunocontent. Middle-aged animals presented memory impairment along with increased BDNF and downregulation of TrkB receptor. The frequency of 1day/week reversed age-related recognition memory impairment, but worsened the performance in the inhibitory avoidance task. The other frequencies rescued aversive memory, but not recognition memory. None of frequencies altered the age-related increase in the BDNF. Seven days/week decreased proBDNF and there was a trend toward increase in the TrkB by the frequency of 1 day/week. These results support that the frequency and intensity of exercise have a profound impact on cognitive functions mainly in elderly. Thus, the effects of physical exercise on behavior and brain functions should take into account the frequency and intensity.


Brain Research | 2010

Adenosine A1 receptors are modified by acute treatment with methylphenidate in adult mice.

Sabrina Mioranzza; Paulo Henrique S. Botton; Marcelo S. Costa; Janaína Espinosa; Vanessa Kazlauckas; Ana Paula Ardais; Diogo O. Souza; Lisiane O. Porciúncula

In recent years misuse of methylphenidate (MPH) has been reported. The main pharmacological target of methylphenidate is the dopaminergic system. Adenosine is a neuromodulator that influences the dopaminergic neurotransmission, but studies on MPH and adenosine are still lacking. In this study, adult mice were acutely treated with MPH (5mg/kg, i.p.) and to model misuse, they received an acute overdosage (50mg/kg, i.p). The involvement of adenosine A(1) receptors in anxiety-related behavior and locomotor and exploratory activity was examined. The administration of methylphenidate (5 and 50mg/kg) 30 min before the exposure to open field arena did not modify locomotor activity. The anxiolytic-like behavior was observed with both doses of MPH as revealed by the increase on the number of entries and the time spent in the open arms in the elevated plus-maze. Pre treatment with selective adenosine A(1) receptor antagonist (DPCPX 1mg/kg, i.p.) did not prevent anxiolytic effect caused by MPH 50mg/kg. Immunoblotting of frontal cortex and hippocampal extracts revealed that MPH 50mg/kg increased 88% adenosine A(1) receptor density in the frontal cortex. Extracts from hippocampus did not reveal any differences in the adenosine A(1) receptor density. Our findings ruled out the participation of adenosine A(1) receptors on the MPH-triggered anxiolytic effects. However, the density of adenosine A(1) receptors increased in a brain area strictly involved in the MPH-mediated effects. Thus, the adenosinergic system may play a role in the methylphenidate actions in the central nervous system.

Collaboration


Dive into the Marcelo S. Costa's collaboration.

Top Co-Authors

Avatar

Lisiane O. Porciúncula

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Paulo Henrique S. Botton

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Sabrina Mioranzza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ana Paula Ardais

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Diogo O. Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Gabriela T. Fioreze

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Diogo Onofre Gomes de Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Janaína Espinosa

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernanda Bordignon Nunes

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge