Marcelo Sousa Silva
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo Sousa Silva.
PLOS ONE | 2015
Eduardo S. Yamamoto; Bruno Luiz Soares Campos; Jéssica A. Jesus; Márcia Dalastra Laurenti; Susan Pereira Ribeiro; Esper G. Kallas; Mariana Rafael-Fernandes; Gabriela Santos-Gomes; Marcelo Sousa Silva; Deborah P. Sessa; João Henrique G. Lago; Debora Levy; Luiz Felipe D. Passero
Among neglected tropical diseases, leishmaniasis is one of the most important ones, affecting more than 12 million people worldwide. The available treatments are not well tolerated, and present diverse side effects, justifying the search for new therapeutic compounds. In the present study, the activity of ursolic acid (UA) and oleanolic acid (OA) were assayed in experimental cutaneous leishmaniasis (in vitro and in vivo). Promastigote forms of L. amazonensis were incubated with OA and UA for 24h, and effective concentration 50% (EC50) was estimated. Ultraestructural alterations in Leishmania amazonensis promastigotes after UA treatment were evaluated by transmission electron microscopy, and the possible mode of action was assayed through Annexin V and propidium iodide staining, caspase 3/7 activity, DNA fragmentation and transmembrane mitochondrial potential. The UA potential was evaluated in intracellular amastigotes, and its therapeutic potential was evaluated in L. amazonensis infected BALB/c mice. UA eliminated L. amazonensis promastigotes with an EC50 of 6.4 μg/mL, comparable with miltefosine, while OA presented only a marginal effect on promastigote forms at 100 μg/mL. The possible mechanism by which promastigotes were eliminated by UA was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondria activity. UA was not toxic for peritoneal macrophages from BALB/c mice, and it was able to eliminate intracellular amastigotes, associated with nitric oxide (NO) production. OA did not eliminate amastigotes nor trigger NO. L. amazonensis infected BALB/c mice submitted to UA treatment presented lesser lesion size and parasitism compared to control. This study showed, for the first time, that UA eliminate promastigote forms through a mechanism associated with programed cell death, and importantly, was effective in vivo. Therefore, UA can be considered an interesting candidate for future tests as a prototype drug for the treatment of cutaneous leishmaniasis.
Experimental Parasitology | 2011
Andreia Sofia Cruz Lança; Karina Pires de Sousa; Jorge Atouguia; D.M.F. Prazeres; Gabriel A. Monteiro; Marcelo Sousa Silva
Trypanosoma brucei is the etiological agent responsible for African trypanosomiasis, an infectious pathology which represents a serious problem of public health and economic losses in Sub-Saharan Africa. As one of the foremost neglected illnesses, few resources have been available for the development of vaccines or new drugs, in spite of the current therapeutical drugs showing little efficiency and high toxicity. Hence, it is obviously important to widen effective therapeutics and preventive strategies against African trypanosomiasis. In this work, we use the DNA vaccine model to evaluate immunisation effectiveness in mice challenged with Trypanosoma brucei brucei. We demonstrate that Balb/C mice immunised intramuscularly with a single dose of a DNA plasmid encoding a bloodstream-stage specific invariant surface glycoprotein (ISG) are partially protected from a lethal dose of T. b. brucei. Interestingly, the surviving animals show high levels of IgG2a anti-trypanosoma antibodies, suggesting that the Th1 response profile seems important for the induced mechanisms of immune protection.
Parasites & Vectors | 2013
Jaison F. B. Querido; Jon Agirre; Gerardo A. Marti; Diego M.A. Guérin; Marcelo Sousa Silva
BackgroundDicistroviridae is a new family of small, non-enveloped, +ssRNA viruses pathogenic to both beneficial arthropods and insect pests. Little is known about the dicistrovirus replication mechanism or gene function, and any knowledge on these subjects comes mainly from comparisons with mammalian viruses from the Picornaviridae family. Due to its peculiar genome organization and characteristics of the per os viral transmission route, dicistroviruses make good candidates for use as biopesticides. Triatoma virus (TrV) is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of the human trypanosomiasis disease called Chagas disease. TrV was postulated as a potential control agent against Chagas’ vectors. Although there is no evidence that TrV nor other dicistroviruses replicate in species outside the Insecta class, the innocuousness of these viruses in humans and animals needs to be ascertained.MethodsIn this study, RT-PCR and ELISA were used to detect the infectivity of this virus in Mus musculus BALB/c mice.ResultsIn this study we have observed that there is no significant difference in the ratio IgG2a/IgG1 in sera from animals inoculated with TrV when compared with non-inoculated animals or mice inoculated only with non-infective TrV protein capsids.ConclusionsWe conclude that, under our experimental conditions, TrV is unable to replicate in mice. This study constitutes the first test to evaluate the infectivity of a dicistrovirus in a vertebrate animal model.
Journal of General Virology | 2015
Rubén Sánchez-Eugenia; Fernando Méndez; Jailson F. B. Querido; Marcelo Sousa Silva; Diego M.A. Guérin; José F. Rodríguez
In contrast to the current wealth of structural information concerning dicistrovirus particle structure, very little is known about their morphogenetic pathways. Here, we describe the expression of the two ORFs encoded by the Triatoma virus (TrV) genome. TrV, a member of the Cripavirus genus of the Dicistroviridae family, infects blood-sucking insects belonging to the Triatominae subfamily that act as vectors for the transmission of Trypanosoma cruzi, the aetiological agent of the Chagas disease. We have established a baculovirus-based model for the expression of the NS (non-structural) and P1 (structural) polyproteins. A preliminary characterization of the proteolytic processing of both polyprotein precursors has been performed using this system. We show that the proteolytic processing of the P1 polyprotein is strictly dependent upon the coexpression of the NS polyprotein, and that NS/P1 coexpression leads to the assembly of virus-like particles (VLPs) exhibiting a morphology and a protein composition akin to natural TrV empty capsids. Remarkably, the unprocessed P1 polypeptide assembles into quasi-spherical structures conspicuously larger than VLPs produced in NS/P1-coexpressing cells, likely representing a previously undescribed morphogenetic intermediate. This intermediate has not been found in members of the related Picornaviridae family currently used as a model for dicistrovirus studies, thus suggesting the existence of major differences in the assembly pathways of these two virus groups.
BioMed Research International | 2013
Jailson F. B. Querido; Jon Agirre; Gerardo A. Marti; Diego M.A. Guérin; Marcelo Sousa Silva
Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.
International Journal for Parasitology-Drugs and Drug Resistance | 2017
Jéssica A. Jesus; Thais N. Fragoso; Eduardo S. Yamamoto; Márcia Dalastra Laurenti; Marcelo Sousa Silva; Aurea F. Ferreira; João Henrique G. Lago; Gabriela S. Gomes; Luiz Felipe D. Passero
Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated daily during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was stimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.
Parasites & Vectors | 2015
Jailson F. B. Querido; María Gabriela Echeverría; Gerardo A. Marti; Rita Costa; María Laura Susevich; Jorge E. Rabinovich; Aydee Copa; Nair A Montaño; Lineth Garcia; Marisol Cordova; Faustino Torrico; Rubén Sánchez-Eugenia; Lissete Sánchez-Magraner; Xabier Muñiz-Trabudua; Ibai López-Marijuan; Gabriela S. Rozas-Dennis; Patricio Diosque; Ana Maria de Castro; Carlos Robello; Julio S Rodríguez; Jaime Altcheh; Paz María Salazar-Schettino; Marta I Bucio; Bertha Espinoza; Diego M.A. Guérin; Marcelo Sousa Silva
BackgroundChagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake.MethodsIn this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015.ResultsOur results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts.ConclusionsWe presented the first experimental evidence of antibodies against TrV structural proteins in human sera.
American Journal of Tropical Medicine and Hygiene | 2018
Aline Rimoldi Ribeiro; Luciana Lima; Larissa Aguiar de Almeida; Joana Patrícia Molato Figueiredo Lopes Monteiro; Cláudia Jassica Gonçalves Moreno; Juliana Damieli Nascimento; Renato Freitas de Araújo; Fernanda Mello; Luciamáre Perinetti Alves Martins; Márcia Aparecida Silva Graminha; Marta Maria Geraldes Teixeira; Marcelo Sousa Silva; Mário Steindel; João Aristeu da Rosa
Chagas disease affects between six and seven million people. Its etiological agent, Trypanosoma cruzi, is classified into six discrete typing units (DTUs). The biological study of 11 T. cruzi strains presented here included four parameters: growth kinetics, parasitemia curves, rate of macrophage infection, and serology to evaluate IgM, total IgG, IgG1, IgG2a, and IgG3. Sequencing of small subunit of ribosomal RNA (SSU rRNA)was performed and the T. cruzi strains were classified into three DTUs. When their growth in liver infusion tryptose medium was represented in curves, differences among the strains could be noted. The parasitemia profile varied among the strains from the TcI, TcII, and TcIII groups, and the 11 T. cruzi strains produced distinct parasitemia levels in infected BALB/c. The TcI group presented the highest rate of macrophage infection by amastigotes, followed by TcII and TcIII. Reactivity to immunoglobulins was observed in the TcI, TcII, and TcIII; all the animals infected with the different strains of T. cruzi showed anti-T. cruzi antibodies. The molecular study presented here resulted in the classification of the T. cruzi strains into the TcI (Bolivia, T lenti, Tm, SC90); TcII (Famema, SC96, SI8, Y); and TcIII (QMM3, QMM5, SI5) groups. These biological and molecular results from 11 T. cruzi strains clarified the factors involved in the biology of the parasite and its hosts. The collection of triatomine (vector) species, and the study of geographic distribution, as well as biological and molecular characterization of the parasite, will contribute to the reporting and surveillance measures in Brazilian states.
Journal of Parasitology Research | 2013
Rita Costa; Karina Pires de Sousa; Jorge Atouguia; Luis Távora Tavira; Marcelo Sousa Silva
In this study, we show that 40.29% of travellers with a possible history of malaria exposure were positive for anti-Plasmodium spp. antibodies, while these individuals were negative by microscopy. The antibody test described here is useful to elucidate malaria exposure in microscopy-negative travellers from endemic countries.
Toxins | 2018
Adriana Parente; Alessandra Daniele-Silva; Allanny Furtado; Menilla M.A. Melo; Ariane Lacerda; Moacir Queiroz; Claudia Roberta de Castro Moreno; Elizabeth Cristina Gomes dos Santos; Hugo Alexandre Oliveira Rocha; Euzébio Guimarães Barbosa; Eneas Carvalho; Arnóbio Antônio da Silva-Júnior; Marcelo Sousa Silva; Matheus F. Fernandes-Pedrosa
Scorpion venom is a rich source of biologically active components and various peptides with high-potential therapeutic use that have been characterized for their antimicrobial and antiproliferative activities. Stigmurin is a peptide identified from the Tityus stigmurus venom gland with high antibacterial and antiproliferative activities and low toxicity. Amino acid substitutions in peptides without a disulfide bridge sequence have been made with the aim of reducing their toxicity and increasing their biological activities. The purpose of this study was to evaluate the structural conformation and structural stability, as well as antimicrobial, antiproliferative, and hemolytic activities of two peptide analogs to Stigmurin, denominated StigA6 and StigA16. In silico analysis revealed the α-helix structure for both analog peptides, which was confirmed by circular dichroism. Data showed that the net charge and hydrophobic moment of the analog peptides were higher than those for Stigmurin, which can explain the increase in antimicrobial activity presented by them. Both analog peptides exhibited activity on cancerous cells similar to the native peptide; however, they were less toxic when tested on the normal cell line. These results reveal a potential biotechnological application of the analog peptides StigA6 and StigA16 as prototypes to new therapeutic agents.