Marcelo Tempesta de Oliveira
Universidade Estadual de Londrina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo Tempesta de Oliveira.
Revista Da Sociedade Brasileira De Medicina Tropical | 2011
Márcia Cristina Furlaneto; Juliana Frasnelli Rota; Regina Mariuza Borsato Quesada; Luciana Furlaneto-Maia; Renne Rodrigues; Silas Oda; Marcelo Tempesta de Oliveira; Rosana Serpa; Emanuele Júlio Galvão de França
INTRODUCTION In this study, we aimed at identifying Candida isolates obtained from blood, urine, tracheal secretion, and nail/skin lesions from cases attended at the Hospital Universitário de Londrina over a 3-year period and at evaluating fluconazole susceptibilities of the isolates. METHODS Candida isolates were identified by polymerase chain reaction (PCR) using species-specific forward primers. The in vitro fluconazole susceptibility test was performed according to EUCAST-AFST reference procedure. RESULTS Isolates were obtained from urine (53.4%), blood cultures (19.2%), tracheal secretion (17.8%), and nail/skin lesions (9.6%). When urine samples were considered, prevalence was similar in women (45.5%) and in men (54.5%) and was high in the age group >61 years than that in younger ones. For blood samples, prevalence was high in neonates (35%) and advanced ages (22.5%). For nail and skin samples, prevalence was higher in women (71.4%) than in men (28.6%). Candida albicans was the most frequently isolated in the hospital, but Candida species other than C. albicans accounted for 64% of isolates, including predominantly Candida tropicalis (33.2%) and Candida parapsilosis (19.2%). The trend for non-albicans Candida as the predominant species was noted from all clinical specimens, except from urine samples. All Candida isolates were considered susceptible in vitro to fluconazole with the exception of isolates belonging to the intrinsically less-susceptible species C. glabrata. CONCLUSIONS Non-albicans Candida species were more frequently isolated in the hospital. Fluconazole resistance was a rare finding in our study.
Mycoses | 2011
Emanuele Júlio Galvão de França; L. Furlaneto-Maia; Regina Mariuza Borsato Quesada; Daniel Favero; Marcelo Tempesta de Oliveira; Márcia Cristina Furlaneto
The aim of this study was to determine in vitro haemolytic and protease activities of Candida parapsilosis and Candida tropicalis isolates, obtained from anatomically distinct sites. Analysis of haemolytic activity of C. parapsilosis and C. tropicalis isolates obtained from the same anatomic site revealed that C. tropicalis isolates from blood had statistically higher activity (P < 0.05) than C. parapsilosis. On comparison of haemolytic activities of Candida isolates obtained from different anatomic sites, C. parapsilosis isolates from tracheal secretion were found to have higher activity than blood isolates. Protease activity was detected in the majority of the isolates analysed. Analysis of proteinase activity of C. parapsilosis and C. tropicalis isolates obtained from the same anatomic site revealed that C. parapsilosis isolates from tracheal secretion had statistically higher activity than C. tropicalis isolates. On comparison of proteinase activities of Candida isolates obtained from different anatomic sites, C. parapsilosis isolates from tracheal secretion were found to have higher activity than blood and superficial lesions isolates. Furthermore, C. tropicalis isolates from superficial lesions had higher activity than tracheal secretion isolates. Our results show the potential of C. parapsilosis and C. tropicalis isolates, obtained from distinct anatomic sites, to produce haemolytic factor and proteinases. Anatomic sites of isolation seem to be correlated with these activities, particularly for C. parapsilosis isolates.
Micron | 2010
Marcelo Tempesta de Oliveira; Ana Flávia Leal Specian; Célia Guadalupe Tardeli de Jesus Andrade; Emanuele Júlio Galvão de França; Luciana Furlaneto-Maia; Márcia Cristina Furlaneto
Candida parapsilosis is found frequently as commensal organism on epithelial tissues, and is also an increasing cause of nosocomial infection. Scanning electron microscope (SEM) observations were used to analyse the capability of C. parapsilosis cells to adhere and grow as biofilm on human natural substrates and to compare the adherence pattern of isolates exhibiting distinct phenotypes. Cells from the crepe phenotype are predominantly elongated and form pseudohyphae whereas cells from the smooth phenotype are yeast-shaped, either in liquid cultures or on human nail and hair surfaces. The electron micrographs revealed that C. parapsilosis cells from the smooth phenotype adhered in higher number to both surfaces compared to the observed for the crepe phenotype. SEM analysis of human hair surface revealed that cells from the smooth phenotype appear as clumped blastoconidia of uniform morphology embedded in a flocculent extracellular material forming biofilm. The extracellular material and biofilm were seeing in a less extension in the crepe phenotype. A distinct adherence pattern was observed when human nail was used as substrate. Here C. parapsilosis cells seem to be linked to surface structures of human nail plate. Fibrillar extracellular material was observed connecting neighbouring cells as well as nail surface.
Environmental Research | 2015
Gustavo Rafael Mazzaron Barcelos; Marilesia Ferreira de Souza; Andréia Ávila Soares de Oliveira; André van Helvoort Lengert; Marcelo Tempesta de Oliveira; Rossana Batista de Oliveira Godoy Camargo; Denise Grotto; Juliana Valentini; Solange Cristina Garcia; Gilberto Úbida Leite Braga; Ilce Mara de Syllos Cólus; Joseph A. Adeyemi; Fernando Barbosa
There have been reports of genetic effects affecting the metabolism of Hg and Pb individually, and thus modulating their toxicities. However, there is still a knowledge gap with respect to how genetics may influence the toxicities of these toxic metals during a co-exposure scenario. This present study is therefore aimed at investigating the effects of polymorphisms in genes (GSTM1, GSTT1, GSTP1, GCLM, GCLC, GPx1, ALAD, VDR and MDR1) that have been implicated in Hg and Pb metabolisms affects the kinetics of these metals, as well as various blood antioxidant status parameters: MDA and GSH, and the activities of CAT, GPx and ALAD among populations that have been co-exposed to both Hg and Pb. Study subjects (207 men; 188 women) were from an Amazonian population in Brazil, exposed to Hg and Pb from diet. The blood levels of Hg and Pb were determined by ICP-MS while genotyping were performed by PCR assays. The median values of Hg and Pb in blood were 39.8µg/L and 11.0µg/dL, respectively. GSTM1, ALAD and VDR polymorphisms influenced Hg in blood (β=0.17; 0.37 and 0.17; respectively, p<0.050) while variations on GCLM, GSTT1 and MDR1 (TT) modulated the concentrations of Pb among the subjects (β=-0.14; 0.13 and -0.22; re-spectively, p<0.050). GSTT1 and GCLM polymorphisms also are associated to changes of MDA concentrations. Persons with null GSTM1 genotype had higher activity of the antioxidant enzyme CAT than carries of the allele. Individuals with deletion of both GSTM1 and GSTT1 had a decreased expression of GPx compared to those that expressed at least, one of the enzymes. ALAD 1/2 subjects had lower ALAD activity than individuals with the non-variant genotype. Our findings give further support that polymorphisms related to Hg and Pb metabolism may modulate Hg and Pb body burden and, consequently metals-induced toxicity.
BioMed Research International | 2014
Andréia Ávila Soares de Oliveira; Marilesia Ferreira de Souza; André van Helvoort Lengert; Marcelo Tempesta de Oliveira; Rossana Batista de Oliveira Godoy Camargo; Gilberto Úbida Leite Braga; Ilce Mara de Syllos Cólus; Fernando Barbosa; Gustavo Rafael Mazzaron Barcelos
This study aims to evaluate the effects of polymorphisms in glutathione (GSH-) related genes (GSTM1, GSTT1, GSTP1, GCLM, and GCLC) in the distribution of Hg in the blood compartments in humans exposed to methylmercury (MeHg). Subjects (n = 88), exposed to MeHg from fish consumption, were enrolled in the study. Hg species in the plasma compartment were determined by LC-ICP-MS, whereas genotyping was performed by PCR assays. Mean total Hg levels in plasma (THgP) and whole blood (THgB) were 10 ± 4.2 and 37 ± 21, whereas mean evels of plasmatic MeHg (MeHgP), inorganic Hg (IHgP), and HgP/HgB were 4.3 ± 2.9, 5.8 ± 2.3 µg/L, and 0.33 ± 0.15, respectively. GSTM1 and GCLC polymorphisms influence THgP and MeHgP (multivariate analyses, P < 0.050). Null homozygotes for GSTM1 showed higher THgP and MeHgP levels compared to subjects with GSTM1 (THgP β = 0.22, P = 0.035; MeHgP β = 0.30, P = 0.050) and persons carrying at least one T allele for GCLC had significant higher MeHgP (β = 0.59, P = 0.046). Also, polymorphic GCLM subjects had lower THgP/THgB than those with the nonvariant genotype. Taken together, data of this study suggest that GSH-related polymorphisms may change the metabolism of MeHg by modifying the distribution of mercury species iin plasma compartment and the HgP/HgB partitioning.
International Journal of Biological Macromolecules | 2015
Maressa Malini; Marilesia Ferreira de Souza; Marcelo Tempesta de Oliveira; Lusânia Maria Greggi Antunes; Suely G. Figueiredo; Aneli M. Barbosa; Robert F. H. Dekker; Ilce Mara de Syllos Cólus
There is growing interest in the anticancer and immunomodulatory potential of fungal β-d-glucans. In the present study, the modulation of gene expression via RT-qPCR and cell cycle kinetics via flow cytometry were assessed in human normal and tumor (Jurkat) lymphocytes after treatment with botryosphaeran (a fungal (1→3)(1→6)-β-d-glucan) from Botryosphaeria rhodina MAMB-05. Cell cultures were treated with botryosphaeran either alone, or in combination with doxorubicin (DXR), in a post-treatment protocol. The expression of genes involved in immunomodulatory processes, apoptosis and cell cycle control, as well as β-d-glucans cell receptors were assessed. Flow cytometry analysis identified tetraploid Jurkat cells in G1 phase when treated with botryosphaeran combined with DXR. This antiproliferative effect in G1 may be associated with down-regulation of the expression of genes involved in the G1 checkpoint. The repression of the CCR5 gene following botryosphaeran treatment, either alone or in combination with DXR, in tumor lymphocytes indicates a possible affinity of this particular (1→3)(1→6)-β-d-glucan for the receptor CCR5. Therefore, botryosphaeran action appears to be involved in the repression of genes related to the G1 phase of the cell cycle and possibly in the interaction of the botryosphaeran, either alone, or in combination with DXR, with the CCR5 receptor.
Revista Da Sociedade Brasileira De Medicina Tropical | 2010
Emanuele Júlio Galvão de França; Daniel Favero; Henrique Scremin; Marcelo Tempesta de Oliveira; Luciana Furlaneto-Maia; Regina Mariuza Borsato Quesada; Márcia Cristina Furlaneto
INTRODUCTION Yeasts belonging to the genus Candida are responsible for the majority of fungal infections in humans. Candida tropicalis has been one of most commonly isolated non-albicans species. To analyze in vitro hemolysis promoted by clinical isolates of C. tropicalis obtained from blood and other clinical samples from hospitalized patients at the University Hospital of Londrina State University, Paraná, Brazil. METHODS The hemolysis promoted by 28 clinical isolates of C. tropicalis was evaluated, and the isolates were grouped into classes according to the hemolysis levels. RESULTS The majority of the blood isolates showed weak hemolysis (+), while the classes of strong hemolysis (+++) and very strong hemolysis (++++) predominated among isolates from other clinical samples such as urine, nail lesions and tracheal secretions. However, no statistical differences were detected (p> 0.05). CONCLUSIONS Isolates of C. tropicalis obtained from different clinical samples showed a capacity to promote in vitro hemolysis.
Pharmaceutical Biology | 2017
Manoela Viar Fogaça; Priscila de Matos Cândido-Bacani; Lucas Milanez Benicio; Lara Martinelli Zapata; Priscilla de Freitas Cardoso; Marcelo Tempesta de Oliveira; Tamara Regina Calvo; Eliana Aparecida Varanda; Wagner Vilegas; Ilce Mara de Syllos Cólus
Abstract Context: Indigofera suffruticosa Miller (Fabaceae) and I. truxillensis Kunth produce compounds, such as isatin (ISA) and indirubin (IRN), which possess antitumour properties. Their effects in mammalian cells are still not very well understood. Objective: We evaluated the activities of ISA and/or IRN on cell viability and apoptosis in vitro, their genotoxic potentials in vitro and in vivo, and the IRN- and ISA-induced expression of ERCC1 or BAX genes. Materials and methods: HeLa and/or CHO-K1 cell lines were tested (3 or 24 h) in the MTT, Trypan blue exclusion, acridine orange/ethidium bromide, cytokinesis-blocked micronucleus (CBMN) and comet (36, 24 and 72 h) tests after treatment with IRN (0.1 to 200 μM) or ISA (0.5 to 50 μM). Gene expression was measured by RT-qPCR in HeLa cells. Swiss albino mice received IRN (3, 4 or 24 h) by gavage (50, 100 and 150 mg/kg determined from the LD50 – 1 g/kg b.w.) and submitted to comet assay in vivo. Results: IRN reduced the viability of CHO-K1 (24 h; 5 to 200 μM) and HeLa cells (10 to 200 μM), and was antiproliferative in the CBMN test (CHO-K1: 0.5 to 10 μM; HeLa: 5 and 10 μM). The drug did not induce apoptosis, micronucleus neither altered gene expression. IRN and ISA were genotoxic for HeLa cells (3 and 24 h) at all doses tested. IRN (100 and 150 mg/kg) also induced genotoxicity in vivo (4 h). Conclusion: IRN and ISA have properties that make them candidates as chemotherapeutics for further pharmacological investigations.
Saudi Journal of Biological Sciences | 2016
Muriel Almeida Xavier; Marcelo Tempesta de Oliveira; Adrivanio Baranoski; Mário Sérgio Mantovani
There is a lack of consensus on whether the role of folate in cancer cells is protective or harmful. The use of folates in combination with cancer-targeting therapeutic regimens requires detailed information to ensure their safe and proper use. Therefore, we evaluated the effects of folic acid (FA) in combination with the chemotherapeutic compounds doxorubicin (DXR), camptothecin (CPT) and methyl methanesulfonate (MMS) on the growth of MCF-7 cells. The data generated from the RTCA assays demonstrated that FA did not affect proliferation in MCF-7 cells treated with DXR and CPT; however, FA reduced the efficacy of MMS treatment. RTCA data also confirmed that DXR and CPT exert their cytotoxic effects in a time-dependent manner and that CPT induced a significantly greater decrease in MCF-7 cell proliferation compared with DXR. The MTT assay failed to detect a reduction in cell proliferation in cells treated with MMS. We quantified the mRNA expression levels of genes associated with cellular stress response, cell cycle and apoptosis pathways using RT-qPCR. The addition of FA to DXR or CPT promoted a similar shift in the gene expression profile of MCF-7 cells compared with cells treated with DXR or CPT without FA; however, this shift did not alter the bioactivity of these drugs. Rather, it indicated that these drugs promoted cell death by alternative mechanisms. In contrast, the addition of FA to MMS reduced the efficacy of the drug without changing the gene expression profile. None of the genes encoding folate receptors that were analyzed were differentially expressed in cells treated with or without FA. In conclusion, supplementation with 450 μM FA was not cytotoxic to MCF-7 cells. However, the addition of FA to anti-cancer drugs must be performed cautiously as the properties of FA might lead to a reduction in drug efficacy.
Toxicology Mechanisms and Methods | 2015
Adrivanio Baranoski; Marcelo Tempesta de Oliveira; Simone Cristine Semprebon; Andressa Megumi Niwa; Lúcia Regina Ribeiro; Mário Sérgio Mantovani
Abstract The β-glucans (β-G) are polysaccharides produced by various organisms, and sulfation of β-G renders them more soluble. With the objective to assess the effects of sulfated and non-sulfated β-G extracted from Agaricus brasiliensis in MCF-7 cells, assays were used to evaluate cytotoxicity, genotoxicity, cell proliferation and mRNA expression. The sulfated and non-sulfated β-G showed dose-dependent cytotoxicity at concentrations of 5 and 10 μg/mL, by the MTT assay. However, only cytotoxicity was observed after 24 h by the Red Neutral test for sulfated β-G, with no genotoxicity for either β-G in comet assay. Proliferation was decreased only at 72 h at a concentration of 100 μg/mL of sulfated β-G. Treatment with 5 μg/mL of sulfated β-G for 6 h reduced the expression of pro-apoptotic genes and stress signaling genes, cell cycle arrest, damage and cell migration. The 5 μg/mL of non-sulfated β-G for 6 h reduced the expression of the stress response gene and signaling damage. These results indicate that the cytotoxicity in the MTT is not cell death, and that, in general, sulfated β-G have greater cytotoxicity compared to non-sulfated β-G.