Marcelo V. Kitahara
Federal University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcelo V. Kitahara.
PLOS ONE | 2010
Marcelo V. Kitahara; Stephen D. Cairns; Jarosław Stolarski; David Blair; David J. Miller
Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia.
PLOS ONE | 2014
Sérgio N. Stampar; Maximiliano M. Maronna; Marcelo V. Kitahara; James Davis Reimer; André C. Morandini
The low evolutionary rate of mitochondrial genes in Anthozoa has challenged their utility for phylogenetic and systematic purposes, especially for DNA barcoding. However, the evolutionary rate of Ceriantharia, one of the most enigmatic “orders” within Anthozoa, has never been specifically examined. In this study, the divergence of mitochondrial DNA of Ceriantharia was compared to members of other Anthozoa and Medusozoa groups. In addition, nuclear markers were used to check the relative phylogenetic position of Ceriantharia in relation to other Cnidaria members. The results demonstrated a pattern of divergence of mitochondrial DNA completely different from those estimated for other anthozoans, and phylogenetic analyses indicate that Ceriantharia is not included within hexacorallians in most performed analyses. Thus, we propose that the Ceriantharia should be addressed as a separate clade.
ZooKeys | 2012
Stephen D. Cairns; Marcelo V. Kitahara
Abstract The 120 presently recognized genera and seven subgenera of the azooxanthellate Scleractinia are keyed using gross morphological characters of the corallum. All genera are illustrated with calicular and side views of coralla. All termes used in the key are defined in an illustrated glossary. A table of all species-level keys, both comprehensive and faunistic, is provided covering the last 40 years.
PLOS ONE | 2014
Marcelo V. Kitahara; Mei-Fang Lin; Sylvain Forêt; Gavin A. Huttley; David J. Miller; Chaolun Allen Chen
The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are “naked corals” that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data. Whereas the “naked coral” hypothesis was based on analysis of the sequences of proteins encoded by a relatively small number of mt genomes, here a much-expanded dataset was used to reinvestigate hexacorallian phylogeny. The initial observation was that, whereas analyses based on nt data support scleractinian monophyly, those based on amino acid (aa) data support the “naked coral” hypothesis, irrespective of the method and with very strong support. To better understand the bases of these contrasting results, the effects of systematic errors were examined. Compared to other hexacorallians, the mt genomes of “Robust” corals have a higher (A+T) content, codon usage is far more constrained, and the proteins that they encode have a markedly higher phenylalanine content, leading us to suggest that mt DNA repair may be impaired in this lineage. Thus the “naked coral” topology could be caused by high levels of saturation in these mitochondrial sequences, long-branch effects or model violations. The equivocal results of these extensive analyses highlight the fundamental problems of basing coral phylogeny on mitochondrial sequence data.
Invertebrate Systematics | 2012
Marcelo V. Kitahara; Jarosław Stolarski; Stephen D. Cairns; Francesca Benzoni; Joel L. Stake; David J. Miller
Abstract. Dactylotrochus cervicornis (= Tridacophyllia cervicornis Moseley, 1881), which occurs in Indo-Pacific waters between 73 and 852 m, was originally described as an astraeid but was later transferred to the Caryophylliidae. Assumed to be solitary, this species has no stolons and only one elongated fossa, and is unique among azooxanthellate scleractinians in often displaying extremely long thecal extensions that are septate and digitiform. Based on both molecular phylogenetic analyses (partial mitochondrial CO1 and 16S rDNA, and partial nuclear 28S rDNA) and morphological characteristics, we propose the transfer of D. cervicornis from the Caryophylliidae to the Agariciidae, making it the first extant representative of the latter family that is solitary and from deep water (azooxanthellate). The basal position of D. cervicornis within the agariciids implied by our analyses strengthens the case for inclusion of fossil species that were solitary, such as Trochoseris, in this family and suggests that the ancestor of this scleractinian family, extant members of which are predominantly colonial and zooxanthellate, may have been solitary and azooxanthellate.
Systematics and Biodiversity | 2010
Marcelo V. Kitahara; Stephen D. Cairns; David J. Miller
The genus Caryophyllia Lamarck, 1816 is the most diverse genus within the azooxanthellate Scleractinia comprising 66 Recent species and a purported 195 nominal fossil species. Examination of part of the deep-sea scleractinian collection made by the Paris Museum off New Caledonia and part of the material collected by CSIRO off Australian waters revealed the occurrence of 23 species of Caryophyllia, of which six are new to science. All new records, including the new species, are described, and synonyms, distribution, type locality, type material and illustration are provided for each species. An identification key to all Recent species of Caryophyllia is presented. In addition, the validity of the genus Caryophyllia was investigated by phylogenetic analyses of a dataset consisting of partial mitochondrial 16S rRNA sequences from 12 species assigned to this genus together with seven species representing some of the most morphologically similar caryophylliid genera, and 14 non-caryophyllid species representing 14 scleractinian families. Irrespective of the method of analysis employed, all of the Caryophyllia species formed a well-supported clade together with Dasmosmilia lymani and Crispatotrochus rugosus. Although based on a subset of the Recent Caryophyllia species, these results are consistent with Caryophyllia being a valid genus, but call for a reexamination of Dasmosmilia and Crispatotrochus.
Journal of Morphology | 2011
Katarzyna Janiszewska; Jarosław Stolarski; Karim Benzerara; Anders Meibom; Maciej Mazur; Marcelo V. Kitahara; Stephen D. Cairns
Micrabaciids are solitary, exclusively azooxanthellate deep‐sea corals belonging to one of the deepest‐living (up to 5,000 m) scleractinian representatives. All modern micrabaciid taxa (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have a porous and often very fragile skeleton consisting of two main microstructural components known also from other scleractinians: rapid accretion deposits and thickening deposits. However, at the microstructural level, the skeletal organization of the micrabaciids is distinctly different from that of other scleractinians. Rapid accretion deposits consist of alternations of superimposed “microcrystalline” (micrometer‐sized aggregates of nodular nanodomains) and fibrous zones. In contrast to all shallow‐water and sympatric deep‐water corals so far described, the thickening deposits of micrabaciids are composed of irregular meshwork of short (1–2 μm) and extremely thin (ca. 100–300 nm) fibers organized into small, chip‐like bundles (ca. 1–2 μm thick). Longer axes of fiber bundles are usually subparallel to the skeletal surfaces and oriented variably in this plane. The unique microstructural organization of the micrabaciid skeleton is consistent with their monophyletic status based on macromorphological and molecular data, and points to a diversity of organic matrix‐mediated biomineralization strategies in Scleractinia. J. Morphol.,2011.
Genome Biology and Evolution | 2014
Mei-Fang Lin; Marcelo V. Kitahara; Haiwei Luo; Dianne M. Tracey; Jonathan B. Geller; Hironobu Fukami; David J. Miller; Chaolun Allen Chen
Corallimorpharia is a small Order of skeleton-less animals that is closely related to the reef-building corals (Scleractinia) and of fundamental interest in the context of understanding the potential impacts of climate change in the future on coral reefs. The relationship between the nominal Orders Corallimorpharia and Scleractinia is controversial—the former is either the closest outgroup to the Scleractinia or alternatively is derived from corals via skeleton loss. This latter scenario, the “naked coral” hypothesis, is strongly supported by analyses based on mitochondrial (mt) protein sequences, whereas the former is equally strongly supported by analyses of mt nucleotide sequences. The “naked coral” hypothesis seeks to link skeleton loss in the putative ancestor of corallimorpharians with a period of elevated oceanic CO2 during the Cretaceous, leading to the idea that these skeleton-less animals may be harbingers for the fate of coral reefs under global climate change. In an attempt to better understand their evolutionary relationships, we examined mt genome organization in a representative range (12 species, representing 3 of the 4 extant families) of corallimorpharians and compared these patterns with other Hexacorallia. The most surprising finding was that mt genome organization in Corallimorphus profundus, a deep-water species that is the most scleractinian-like of all corallimorpharians on the basis of morphology, was much more similar to the common scleractinian pattern than to those of other corallimorpharians. This finding is consistent with the idea that C. profundus represents a key position in the coral <-> corallimorpharian transition.
Science Advances | 2016
Katarzyna Frankowiak; Xingchen T. Wang; Daniel M. Sigman; Anne M. Gothmann; Marcelo V. Kitahara; Maciej Mazur; Anders Meibom; Jarosław Stolarski
New isotopic and microstructural data suggest that the Tethyan Triassic corals were predominantly photosymbiotic. Roughly 240 million years ago (Ma), scleractinian corals rapidly expanded and diversified across shallow marine environments. The main driver behind this evolution is uncertain, but the ecological success of modern reef-building corals is attributed to their nutritional symbiosis with photosynthesizing dinoflagellate algae. We show that a suite of exceptionally preserved Late Triassic (ca. 212 Ma) coral skeletons from Antalya (Turkey) have microstructures, carbonate 13C/12C and 18O/16O, and intracrystalline skeletal organic matter 15N/14N all indicating symbiosis. This includes species with growth forms conventionally considered asymbiotic. The nitrogen isotopes further suggest that their Tethys Sea habitat was a nutrient-poor, low-productivity marine environment in which photosymbiosis would be highly advantageous. Thus, coral-dinoflagellate symbiosis was likely a key driver in the evolution and expansion of shallow-water scleractinians.
Archive | 2016
Marcelo V. Kitahara; Hironobu Fukami; Francesca Benzoni; Danwei Huang
The taxonomy of scleractinian corals has traditionally been established based on morphology at the “macro” scale since the time of Carl Linnaeus. Taxa described using macromorphology are useful for classifying the myriad of growth forms, yet new molecular and small-scale morphological data have challenged the natural historicity of many familiar groups, motivating multiple revisions at every taxonomic level. In this synthesis of scleractinian phylogenetics and systematics, we present the most current state of affairs in the field covering both zooxanthellate and azooxanthellate taxa, focusing on the progress of our phylogenetic understanding of this ecologically-significant clade, which today is supported by rich sets of molecular and morphological data. It is worth noting that when DNA sequence data was first used to investigate coral evolution in the 1990s, there was no concerted effort to use phylogenetic information to delineate problematic taxa. In the last decade, however, the incompatibility of coral taxonomy with their evolutionary history has become much clearer, as molecular analyses for corals have been improved upon technically and expanded to all major scleractinian clades, shallow and deep. We describe these methodological developments and summarise new taxonomic revisions based on robust inferences of the coral tree of life. Despite these efforts, there are still unresolved sections of the scleractinian phylogeny, resulting in uncertain taxonomy for several taxa. We highlight these and propose a way forward for the taxonomy of corals.