Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcia R. Saban is active.

Publication


Featured researches published by Marcia R. Saban.


American Journal of Pathology | 2002

Gene Expression Profiling of Mouse Bladder Inflammatory Responses to LPS, Substance P, and Antigen-Stimulation

Marcia R. Saban; Ngoc-Bich Nguyen; Timothy G. Hammond; Ricardo Saban

Inflammatory bladder disorders such as interstitial cystitis (IC) deserve attention since a major problem of the disease is diagnosis. IC affects millions of women and is characterized by severe pain, increased frequency of micturition, and chronic inflammation. Characterizing the molecular fingerprint (gene profile) of IC will help elucidate the mechanisms involved and suggest further approaches for therapeutic intervention. Therefore, in the present study we used established animal models of cystitis to determine the time course of bladder inflammatory responses to antigen, Escherichia coli lipopolysaccharide (LPS), and substance P (SP) by morphological analysis and cDNA microarrays. The specific aim of the present study was to compare bladder inflammatory responses to antigen, LPS, and SP by morphological analysis and cDNA microarray profiling to determine whether bladder responses to inflammation elicit a specific universal gene expression response regardless of the stimulating agent. During acute bladder inflammation, there was a predominant infiltrate of polymorphonuclear neutrophils into the bladder. Time-course studies identified early, intermediate, and late genes that were commonly up-regulated by all three stimuli. These genes included: phosphodiesterase 1C, cAMP-dependent protein kinase, iNOS, beta-NGF, proenkephalin B and orphanin, corticotrophin-releasing factor (CRF) R, estrogen R, PAI2, and protease inhibitor 17, NFkB p105, c-fos, fos-B, basic transcription factors, and cytoskeleton and motility proteins. Another cluster indicated genes that were commonly down-regulated by all three stimuli and included HSF2, NF-kappa B p65, ICE, IGF-II and FGF-7, MMP2, MMP14, and presenilin 2. Furthermore, we determined gene profiles that identify the transition between acute and chronic inflammation. During chronic inflammation, the urinary bladder presented a predominance of monocyte/macrophage infiltrate and a concomitant increase in the expression of the following genes: 5-HT 1c, 5-HTR7, beta 2 adrenergic receptor, c-Fgr, collagen 10 alpha 1, mast cell factor, melanocyte-specific gene 2, neural cell adhesion molecule 2, potassium inwardly-rectifying channel, prostaglandin F receptor, and RXR-beta cis-11-retinoic acid receptor. We conclude that microarray analysis of genes expressed in the bladder during experimental inflammation may be predictive of outcome. Further characterization of the inflammation-induced gene expression profiles obtained here may identify novel biomarkers and shed light into the etiology of cystitis.


American Journal of Pathology | 2003

Expression of Protease-Activated Receptor-1, -2, -3, and -4 in Control and Experimentally Inflamed Mouse Bladder

Michael R. D'Andrea; Marcia R. Saban; Ngoc-Bich Nguyen; Patricia Andrade-Gordon; Ricardo Saban

Inflammation underlines all major bladder pathologies and represents a defense reaction to injury involving a mandatory participation of mast cells and sensory nerves. Mast cells are particularly frequent in close proximity to epithelial surfaces where they are strategically located in the bladder and release their mediators in response to inflammation. Tryptase is specifically produced by mast cells and modulates inflammation by activating protease-activated receptors (PARs). We recently found that PAR-4 mRNA is up-regulated in experimental bladder inflammation regardless of the initiating stimulus. Because it has been reported that PAR-1, PAR-2, and PAR-3 may also be involved in the processes of inflammation, we used immunohistochemistry to characterize the expression of all known PARs in normal, acute, and chronic inflamed mouse bladder. We found that all four PARs are present in the control mouse bladder, and follow a unique distribution. All four PARs are co-expressed in the urothelium, whereas PAR-1 and PAR-2 are predominant in the detrusor muscle, and PAR-4 is expressed in peripheral nerves and plexus cell bodies. The strong expression of PARs in the detrusor muscle indicates the need for studies on the role of these receptors in motility whereas the presence of PAR-4 in nerves may indicate its participation in neurogenic inflammation. In addition, PARs are differentially modulated during inflammation. PAR-1 and PAR-2 are down-regulated in acute inflammation whereas PAR-3 and PAR-4 are up-regulated. Bladder fibroblasts were found to present a clear demarcation in PAR expression secondary to acute and chronic inflammation. Our findings provide evidence of participation of PARs in the urinary system, provide a working model for mast cell tryptase signaling in the mouse bladder, and evoke testable hypotheses regarding the roles of PARs in bladder inflammation. It is timely to understand the role of tryptase signaling and PARs in the context of bladder biology.


American Journal of Pathology | 2000

Neurokinin-1 (NK-1) receptor is required in antigen-induced cystitis.

Ricardo Saban; Marcia R. Saban; Ngoc-Bich Nguyen; Bao Lu; Craig Gerard; Norma P. Gerard; Timothy G. Hammond

Interstitial cystitis (IC) is a debilitating disease that has been adversely affecting the quality of womens lives for many years. The trigger in IC is not entirely known, and a role for the sensory nerves in its pathogenesis has been suggested. In addition to inflammation, increased mast cell numbers in the detrusor muscle have been reported in a subset of IC patients. Experimentally, several lines of evidence support a central role for substance P and neurokinin-1 (NK-1) receptors in cystitis. The availability of mice genetically deficient in neurokinin-1 receptor (NK-1R(-/-)) allows us to directly evaluate the importance of substance P in cystitis. An unexpected finding of this investigation is that NK-1R(-/-) mice present increased numbers of mast cells in the bladder when compared with wild-type control mice. Despite the increase in mast cell numbers, no concomitant inflammation was observed. In addition, bladder instillation of wild-type mice with a sensitizing antigen induces activation of mast cells and an acute inflammatory response characterized by plasma extravasation, edema, and migration of neutrophils. Antigen-sensitized NK-1R(-/-) mice also exhibit bladder mast cell degranulation in response to antigen challenge. However, NK-1R(-/-) mice are protected from inflammation, failing to present bladder inflammatory cell infiltrate or edema in response to antigen challenge. This work presents the first evidence of participation of NK-1 receptors in cystitis and a mandatory participation of these receptors on the chain of events linking mast cell degranulation and inflammation.


The Journal of Allergy and Clinical Immunology | 1994

Human FcERI-IgG and humanized anti-IgE monoclonal antibody MaE11 block passive sensitization of human and rhesus monkey lung☆

Ricardo Saban; Mary Haak-Frendscho; Matthew J. Zine; John Ridgway; Cornelia Gorman; Leonard G. Presta; Dale E. Bjorling; Marcia R. Saban; Paula M. Jardieu

IgE antibodies are thought to play an important role in the induction of allergic inflammation of the bronchi. In this study we assessed the capacity of two inhibitors, FcERI-IgG, an immunoadhesin made up of the alpha chain of the high-affinity IgE receptor joined to a truncated IgG heavy chain, and MaE11, a humanized murine anti-human IgE antibody, to prevent allergen sensitization. Lung parenchyma strips from rhesus monkeys and human beings were passively sensitized for 20 hours with serum from a ragweed-sensitive patient in the presence of 0, 1-, 5-, or 10-fold concentrations of the inhibitors relative to IgE. The parenchymal strips were then suspended in a superfusion apparatus for measurement of isometric tone and collection of superfusate for histamine analysis in response to challenge with antigen E (AgE). Nonsensitized tissues did not react to AgE challenge, whereas AgE challenge of passively sensitized tissues resulted in a time-dependent parenchymal contraction and histamine release. Both FcERI-IgG and MaE11 completely abolished the AgE-induced contraction and histamine release in a dose-dependent manner. In addition, passively sensitized lung tissues failed to respond to direct challenge with either FcERI-IgG or MaE11. The results of this study suggest that FcERI-IgG and MaE11 may have important immunotherapeutic benefit for the amelioration of IgE-mediated diseases.


BMC Complementary and Alternative Medicine | 2009

Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity

Mark Barton Frank; Qing-Qing Yang; Jeanette Osban; Joseph Azzarello; Marcia R. Saban; Ricardo Saban; Richard A. Ashley; Jan C Welter; Kar-Ming A. Fung; Hsueh-Kung Lin

BackgroundOriginating from Africa, India, and the Middle East, frankincense oil has been important both socially and economically as an ingredient in incense and perfumes for thousands of years. Frankincense oil is prepared from aromatic hardened gum resins obtained by tapping Boswellia trees. One of the main components of frankincense oil is boswellic acid, a component known to have anti-neoplastic properties. The goal of this study was to evaluate frankincense oil for its anti-tumor activity and signaling pathways in bladder cancer cells.MethodsFrankincense oil-induced cell viability was investigated in human bladder cancer J82 cells and immortalized normal bladder urothelial UROtsa cells. Temporal regulation of frankincense oil-activated gene expression in bladder cancer cells was identified by microarray and bioinformatics analysis.ResultsWithin a range of concentration, frankincense oil suppressed cell viability in bladder transitional carcinoma J82 cells but not in UROtsa cells. Comprehensive gene expression analysis confirmed that frankincense oil activates genes that are responsible for cell cycle arrest, cell growth suppression, and apoptosis in J82 cells. However, frankincense oil-induced cell death in J82 cells did not result in DNA fragmentation, a hallmark of apoptosis.ConclusionFrankincense oil appears to distinguish cancerous from normal bladder cells and suppress cancer cell viability. Microarray and bioinformatics analysis proposed multiple pathways that can be activated by frankincense oil to induce bladder cancer cell death. Frankincense oil might represent an alternative intravesical agent for bladder cancer treatment.


American Journal of Physiology-renal Physiology | 2008

VEGF receptors and neuropilins are expressed in the urothelial and neuronal cells in normal mouse urinary bladder and are upregulated in inflammation

Marcia R. Saban; Joseph M. Backer; Marina V. Backer; Julie Maier; Ben Fowler; Carole A. Davis; Cindy Simpson; Xue Ru Wu; Lori A. Birder; Michael R. Freeman; Shay Soker; Robert E. Hurst; Ricardo Saban

Recent evidence supports a role for vascular endothelium growth factor (VEGF) signaling in bladder inflammation. However, it is not clear what bladder cells are targeted by VEGF. Therefore, we determined the nature of cells responding to VEGF in normal and inflamed bladders by tagging such cells in vivo with a targeted fluorescent tracer, scVEGF/Cy, an engineered single-chain VEGF labeled with Cy5.5 dye, which identifies cells with accessible and functionally active VEGF receptors. Inflammation was induced by intravesical instillation of PAR-activating peptides or BCG. In vivo NIRF imaging with intravenously injected scVEGF/Cy revealed accumulation of the tracer in the control mouse bladder and established that inflammation increased the steady-state levels of tracer uptake. Ex vivo colocalization of Cy5.5 dye revealed that in normal and at a higher level in inflamed bladder, accumulation of scVEGF/Cy occurs in both urothelial and ganglial cells, expressing VEGF receptors VEGFR-1 and VEGFR-2, as well as VEGF coreceptors neuropilins (NRP) NRP1 and NRP2. PCR results indicate that the messages for VEGF-Rs and NRPs are present in the bladder mucosa and ChIP/QPCR analysis indicated that inflammation induced upregulation of genes encoding VEGFRs and NRPs. Our results strongly suggest new and blossoming VEGF-driven processes in bladder urothelial cells and ganglia in the course of inflammation. We expect that molecular imaging of the VEGF pathway in the urinary tract by receptor-mediated cell tagging in vivo will be useful for clinical diagnosis and therapeutic monitoring, and will help to accelerate the development of bladder-targeting drugs and treatments.


BMC Immunology | 2007

Discriminators of mouse bladder response to intravesical Bacillus Calmette-Guerin (BCG)

Marcia R. Saban; Cindy Simpson; Carole A. Davis; Gemma Wallis; Nicholas Knowlton; Mark Barton Frank; Michael Centola; Randle M. Gallucci; Ricardo Saban

BackgroundIntravesical Bacillus Calmette-Guerin (BCG) is an effective treatment for bladder superficial carcinoma and it is being tested in interstitial cystitis patients, but its precise mechanism of action remains poorly understood. It is not clear whether BCG induces the release of a unique set of cytokines apart from its pro-inflammatory effects. Therefore, we quantified bladder inflammatory responses and alterations in urinary cytokine protein induced by intravesical BCG and compared the results to non-specific pro-inflammatory stimuli (LPS and TNF-α). We went further to determine whether BCG treatment alters cytokine gene expression in the urinary bladder.MethodsC57BL/6 female mice received four weekly instillations of BCG, LPS, or TNF-α. Morphometric analyses were conducted in bladders isolated from all groups and urine was collected for multiplex analysis of 18 cytokines. In addition, chromatin immune precipitation combined with real-time polymerase chain reaction assay (CHIP/Q-PCR) was used to test whether intravesical BCG would alter bladder cytokine gene expression.ResultsAcute BCG instillation induced edema which was progressively replaced by an inflammatory infiltrate, composed primarily of neutrophils, in response to weekly administrations. Our morphological analysis suggests that these polymorphonuclear neutrophils are of prime importance for the bladder responses to BCG. Overall, the inflammation induced by BCG was higher than LPS or TNF-α treatment but the major difference observed was the unique granuloma formation in response to BCG. Among the cytokines measured, this study highlighted the importance of IL-1β, IL-2, IL-3, IL-4, IL-6, IL-10, IL-17, GM-CSF, KC, and Rantes as discriminators between generalized inflammation and BCG-specific inflammatory responses. CHIP/Q-PCR indicates that acute BCG instillation induced an up-regulation of IL-17A, IL-17B, and IL-17RA, whereas chronic BCG induced IL-17B, IL-17RA, and IL-17RB.ConclusionTo the best of our knowledge, the present work is the first to report that BCG induces an increase in the IL-17 family genes. In addition, BCG induces a unique type of persisting bladder inflammation different from TNF-α, LPS, and, most likely, other classical pro-inflammatory stimuli.


American Journal of Physiology-renal Physiology | 2008

Urothelial expression of neuropilins and VEGF receptors in control and interstitial cystitis patients

Ricardo Saban; Marcia R. Saban; Julie Maier; Ben Fowler; Mark W. Tengowski; Carole A. Davis; Xue Ru Wu; Daniel J. Culkin; Paul J. Hauser; Joseph M. Backer; Robert E. Hurst

Interstitial cystitis (IC) is a chronic and painful bladder syndrome of unknown cause with no reliable biological marker or effective therapy. Vascular endothelial growth factor (VEGF), which plays a key role in bladder inflammation, is closely associated with the vascular alterations observed in patients with IC. However, our recent findings of VEGF receptors (VEGF-Rs) and VEGF coreceptors on nonendothelial cells in human and mouse urothelium suggest that additional VEGF targets and functions are possible in IC bladders. We report here that VEGF-Rs and coreceptors (neuropilins; NRP) are strongly expressed in both the human bladder urothelium and in the human bladder cancer cell line (J82) and that the expression of NRP2 and VEGF-R1 is significantly downregulated in IC compared with control subjects. In addition, treatment of J82 cells with bacillus Calmette-Guérin (BCG), a novel treatment strategy for IC, upregulates the messages for NRPs and VEGF-Rs. Furthermore, intravesical instillation of an internalizable VEGF fluorescent tracer (scVEGF/Cy5.5) into mouse urinary bladders results in a marked ligand accumulation in the urothelium and bladder parenchyma, indicating that urothelial VEGF-Rs are functionally active and capable of ligand interaction and internalization. Our results suggest that the VEGF pathway is altered in IC, that urinary VEGF may gain access to the bladder wall via these receptors, and that BCG treatment may replenish the missing VEGF-Rs/NRP receptors. Together, these results suggest that levels of NRPs, VEGF-Rs, and VEGF are new putative markers for the diagnosis of IC and that modulating these receptors can be exploited as therapeutic strategies.


The Journal of Urology | 2000

Nuclear factor kappa B mediates lipopolysaccharide-induced inflammation in the urinary bladder.

Xiao-Chun Wang; Ricado Saban; James H. Kaysen; Marcia R. Saban; Patricia L. Allen; Edmund Benes; Timmothy G. Hammond

PURPOSE The proteins which constitute the final common pathway linking receptors on cell surfaces to the inflammatory cascade have recently been identified and cloned. Central to activation of this inflammatory cascade is translocation from cytosol to nucleus of the nuclear transcription factor known as nuclear factor-kappa B (NF-kappaB). The purpose of this study was to determine whether NF-kappaB cascade plays a role in lipopolysaccharide (LPS)-induced inflammation of the mouse urinary bladder. MATERIALS AND METHODS Bladder inflammation was induced in anesthetized mice by intravesical instillation of lipopolysaccharide (LPS) and quantified by morphometric analysis. The NK-1 receptors for substance P were quantified by flow cytometry. LPS-induced degradation of inhibitory IkappaB subunit was quantified by Western blotting analysis and translocation of NF-kappaB protein from cytosol to the nucleus was determined by confocal microscopy and Western blotting analysis. In addition, we determine the effect of lactacystin, a proteosome inhibitor, on LPS-induced IkappaB degradation and NF-kappaB translocation, NK-1 receptor fluorescence intensity, and bladder inflammation. RESULTS LPS instillation into the mouse bladder resulted in time dependent loss of the inhibitory IkappaB subunit of the NF-kappaB protein complex. IkappaB cleavage was followed by translocation of NF-kappaB from the cytosol to the nucleus. This was associated with increased expression of an NF-kappaB dependent inflammatory component, the NK-1 receptor. Pretreatment of mouse bladders with the NF-kappaB inhibitor, lactacystin, prevented cleavage of IkappaB in a dose-dependent manner. Lactacystin prevented increases in the NF-kappaB dependent inflammatory cascade components such as the NK-1 receptor. At the whole tissue level, the marked inflammatory infiltrate and mucosal breakdown associated with LPS administration was completely abolished by lactacystin. CONCLUSION NF-kappaB mediates many features of urinary bladder inflammation induced by LPS. The NF-kappaB cascade is an important target for anti-inflammatory management of cystitis.


BMC Physiology | 2007

Regulatory network of inflammation downstream of proteinase-activated receptors

Ricardo Saban; Michael R. D'Andrea; Patricia Andrade-Gordon; Igor Dozmorov; Michael A. Ihnat; Robert E. Hurst; Cindy Simpson; Marcia R. Saban

BackgroundProtease-activated receptors (PAR) are present in the urinary bladder, and their expression is altered in response to inflammation. PARs are a unique class of G protein-coupled that carry their own ligands, which remain cryptic until unmasked by proteolytic cleavage. Although the canonical signal transduction pathway downstream of PAR activation and coupling with various G proteins is known and leads to the rapid transcription of genes involved in inflammation, the effect of PAR activation on the downstream transcriptome is unknown.We have shown that intravesical administration of PAR-activating peptides leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS), substance P (SP), and antigen was strongly attenuated by PAR1- and to a lesser extent by PAR2-deficiency.ResultsHere, cDNA array experiments determined inflammatory genes whose expression is dependent on PAR1 activation. For this purpose, we compared the alteration in gene expression in wild type and PAR1-/- mice induced by classical pro-inflammatory stimuli (LPS, SP, and antigen). 75 transcripts were considered to be dependent on PAR-1 activation and further annotated in silico by Ingenuity Pathways Analysis (IPA) and gene ontology (GO). Selected transcripts were target validated by quantitative PCR (Q-PCR). Among PAR1-dependent transcripts, the following have been implicated in the inflammatory process: b2m, ccl7, cd200, cd63, cdbpd, cfl1, dusp1, fkbp1a, fth1, hspb1, marcksl1, mmp2, myo5a, nfkbia, pax1, plaur, ppia, ptpn1, ptprcap, s100a10, sim2, and tnfaip2. However, a balanced response to signals of injury requires a transient cellular activation of a panel of genes together with inhibitory systems that temper the overwhelming inflammation. In this context, the activation of genes such as dusp1 and nfkbia seems to counter-balance the inflammatory response to PAR activation by limiting prolonged activation of p38 MAPK and increased cytokine production. In contrast, transcripts such as arf6 and dcnt1 that are involved in the mechanism of PAR re-sensitization would tend to perpetuate the inflammatory reaction in response to common pro-inflammatory stimuli.ConclusionThe combination of cDNA array results and genomic networks reveals an overriding participation of PAR1 in bladder inflammation, provides a working model for the involvement of downstream signaling, and evokes testable hypotheses regarding the transcriptome downstream of PAR1 activation.It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestation of cystitis.

Collaboration


Dive into the Marcia R. Saban's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ngoc-Bich Nguyen

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Dozmorov

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Julie Maier

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ngoc Bich Nguyen

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge