Marciel T. Oliveira
Federal University of Pernambuco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marciel T. Oliveira.
Theoretical and Experimental Plant Physiology | 2014
Mauro Guida Santos; Marciel T. Oliveira; Karla V. Figueiredo; Hiram M. Falcão; Emília Arruda; Jarcilene Silva de Almeida-Cortez; Everardo Valadares de Sá Barretto Sampaio; Jean Pierre Henry Balbaud Ometto; Rômulo Simões Cezar Menezes; Antonio Fernando Morais de Oliveira; Marcelo Francisco Pompelli; Antonio Celso Dantas Antonino
Our review focuses on the projections of climate change in the Brazilian semiarid region, the Caatinga, based on recent publications about global climate change and biology. We found several vulnerable points in the initial estimates, the main one being that the data were collected and analyzed without a multidisciplinary knowledge. This review discusses several studies that show the current knowledge in many semiarid regions around the world. Some of these studies argue for the increase in vegetation greenness responses even under severe and prolonged drought, based on the high resilience the Caatinga native species show under severe drought conditions over the years. Additionally, we include in this review recent data produced by our group on key ecophysiological variables under drought conditions. We also show successful examples of deforested areas recovery in the semiarid region of the Central America. It is critical that the recovery of semiarid areas is coupled with the implementation of socio-environmental policies, engaging the local population and providing subsidies for life wealth improvement. These are key aspects for a long-term recovery and conservation of the Brazilian dry tropical forest.
Plant Physiology and Biochemistry | 2013
Rebeca Rivas; Marciel T. Oliveira; Mauro Guida Santos
The main objective of this study was to assess whether recurring water stress occurring from seed germination to young plants of Moringa oleifera Lam. are able to mitigate the drought stress effects. Germination, gas exchange and biochemical parameters were analysed after three cycles of water deficit. Young plants were used 50 days after germination under three osmotic potentials (0.0, -0.3 and -0.4 MPa). For each germination treatment, control (irrigated) and stressed (10% of water control) plants were compared for a total of six treatments. There were two cycles of drought interspersed with 10 days of rehydration. The young plants of M. oleifera showed increased tolerance to repeated cycles of drought, maintaining high relative water content (RWC), high water use efficiency (WUE), increased photosynthetic pigments and increased activity of antioxidant enzymes. There was rapid recovery of the photosynthetic rate during the rehydration period. The stressed plants from the -0.3 and -0.4 MPa treatments showed higher tolerance compared to the control plants. The results suggest that seeds of M. oleifera subjected to mild water deficit have had increased the ability for drought tolerance when young plant.
Acta Physiologiae Plantarum | 2012
Gabriella Frosi; Marciel T. Oliveira; Jarcilene Silva de Almeida-Cortez; Mauro Guida Santos
To better understand the proliferation of Calotropis procera in a semi-arid region of northeastern Brazil (Caatinga), we designed two experiments to determine which ecophysiological characteristics contribute to the species adaptive success. The first experiment was conducted with young plants under greenhouse conditions and three water regimes. The second experiment was conducted with adult plants under field conditions subject to regional seasonality. Young plants exhibited a high tolerance to water deficits, mainly because of their strong stomatal control, which was observed before any biochemical alterations in leaf metabolism. Only under full suspension of irrigation did the plants show a reduction in relative water content. Under field conditions, adult plants showed a high resilience to the semi-arid environment with respect to gas exchange and other measured biochemical parameters, including photosynthetic pigment, soluble sugars, amino acids and protein content, even under the low soil water availability of the dry season. This season featured high photosynthetically active radiation, low relative humidity and high temperatures, and thus exposed plants to extreme differences between leaf and air temperatures. Calotropis procera remains green throughout the year, indicating that it has developed several means of tolerating the semi-arid climate. Furthermore, this species maintains a high photosynthetic rate despite reduced stomatal conductance, which increases its water use efficiency, a fundamental characteristic for survival in this ecosystem.
PLOS ONE | 2014
Marciel T. Oliveira; Virginia Matzek; Camila Dias Medeiros; Rebeca Rivas; Hiram M. Falcão; Mauro Guida Santos
Ecophysiological traits of Prosopis juliflora (Sw.) DC. and a phylogenetically and ecologically similar native species, Anadenanthera colubrina (Vell.) Brenan, were studied to understand the invasive species’ success in caatinga, a seasonally dry tropical forest ecosystem of the Brazilian Northeast. To determine if the invader exhibited a superior resource-capture or a resource-conservative strategy, we measured biophysical and biochemical parameters in both species during dry and wet months over the course of two years. The results show that P. juliflora benefits from a flexible strategy in which it frequently outperforms the native species in resource capture traits under favorable conditions (e.g., photosynthesis), while also showing better stress tolerance (e.g., antioxidant activity) and water-use efficiency in unfavorable conditions. In addition, across both seasons the invasive has the advantage over the native with higher chlorophyll/carotenoids and chlorophyll a/b ratios, percent N, and leaf protein. We conclude that Prosopis juliflora utilizes light, water and nutrients more efficiently than Anadenanthera colubrina, and suffers lower intensity oxidative stress in environments with reduced water availability and high light radiation.
Australian Journal of Botany | 2012
Karla V. Figueiredo; Marciel T. Oliveira; Antonio Fernando Morais de Oliveira; Gabriela Silva; Mauro Guida Santos
The primary physiological function of the leaf cuticle is to limit water loss. Thus, in the present study, we examined the hypothesis that variation in the quality and content of the epicuticular wax between different species influences leaf gas exchange. Plants of Jatropha mollissima (Pohl) Bailon, a Brazilian semiarid native, and Jatropha curcas L. (Euphorbiaceae), an exotic species, were subjected to a water deficit in the presence or absence of epicuticular wax. Plants were grown in 10-L pots under greenhouse conditions. The relative water content, gas-exchange parameters and primary carbon metabolism were measured at 21 days after the irrigation was reduced to induce a water deficit. The well-watered plants of both species showed recovery of gas exchange days after the removal of epicuticular wax. Furthermore, under drought, a gradual increase in transpiration rates was observed only in the leaves of native species without wax, although the stomatal conductance did not differ between the species. High relative water content was maintained, except in the leaves under drought and without wax from Day 13 onward, when compared with all other treatments. The wax production was induced in both species under water shortage. Nevertheless, the native species showed a higher content of long-chain n-alkanes. In fact, the barrier to water vapour under reduced stomatal conductance was highest in the native species.
Acta Physiologiae Plantarum | 2014
Camila Dias Medeiros; José Ribamar Costa Ferreira Neto; Marciel T. Oliveira; Rebeca Rivas; Valesca Pandolfi; Ederson Akio Kido; José Ivo Baldani; Mauro Guida Santos
This study analyzes changes in gene expression and the biochemical and physiological properties of the antioxidant system in the leaves of two sugarcane cultivars under salt stress. In both salt-stressed cultivars, no alteration in the foliar nitrogen content was observed; however, there was a reduction in the phosphorus and potassium levels and an increase in the sodium and chloride concentrations. There was also a reduction in gas exchange on the third day under salt stress. Although the content of soluble sugars remained stable in both species, there was a decrease in free amino acids. However, only the RB872552 cultivar displayed a lower leaf protein content compared to the control. The salt stress resulted in higher superoxide dismutase and l-ascorbate peroxidase activities, but only for the RB92579 cultivar. On the other hand, both cultivars were able to maintain lower malondialdehyde contents than the control plants. The gene expression analysis revealed down-regulated expression levels, including the levels of those enzymes linked to higher activities under salt stress. Our results showed that gene induction and leaf antioxidative cycle enzyme activity do not occur at the same time. The variations in gene expression and physiological responses are also discussed.
Journal of Plant Physiology | 2016
Gabriella Frosi; Vanessa Barros; Marciel T. Oliveira; Mariana Santos; Diego Gomes Ramos; Leonor Costa Maia; Mauro Guida Santos
In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (Pi) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (Pi) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H2O and -H2O), 2 AMF levels (+AMF and -AMF) and 2Pi levels (+Pi and -Pi). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, Pi or AMF+Pi plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or Pi. After rehydration, those plants submitted to drought with AMF, Pi or AMF+Pi showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or Pi. However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, Pi or AMF+Pi increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis.
Bragantia | 2016
Déborah Silva Oliveira; Maria Jaislanny Lacerda e Medeiros; Silvia Pereira; Marciel T. Oliveira; Gabriella Frosi; Emília Arruda; Mauro Guida Santos
AbstrA ct: The main goal of this study was to evaluate the performance of two palm species under semi-arid conditions during the rainy and dry periods: the semi-arid native Syagrus coronata and a native to tropical America, Acrocomia aculeata. The leaf water potential, gas exchange, leaf soluble sugars, starch, free amino acids, total soluble protein content and morphological traits were measured. The highest leaf water potential and CO 2 assimilation values in both species were achieved during the rainy period. In response to the low soil moisture content during the dry period, gas exchange decreased 72 and 92% in S. coronata and A. aculeata, respectively,
Tree Physiology | 2017
Marciel T. Oliveira; Gustavo Maia Souza; Silvia Pereira; Déborah Silva Oliveira; Karla V. Figueiredo-Lima; Emília Arruda; Mauro Guida Santos
We investigated whether there were consistent differences in the physiological and anatomical traits and phenotypic variability of an invasive (Prosopis juliflora (Sw.) DC.) and native species (Anadenanthera colubrina (Vell.) Brenan) in response to seasonality in a tropical dry forest. The water potential, organic solutes, gas exchange, enzymes of the antioxidant system, products of oxidative stress and anatomical parameters were evaluated in both species in response to seasonality. An analysis of physiological responses indicated that the invasive P. juliflora exhibited higher response in net photosynthetic rate to that of the native species between seasons. Higher values of water potential of the invasive species than those of the native species in the dry season indicate a more efficient mechanism for water regulation in the invasive species. The invasive species exhibits a thicker cuticle and trichomes, which can reduce transpiration. In combination, the increased epidermal thickness and the decreased thickness of the parenchyma in the dry season may contribute to water saving. Our data suggest a higher variability in anatomical traits in the invasive species as a response to seasonality, whereas physiological traits did not present a clear pattern of response.
Photosynthetica | 2012
Camila Dias Medeiros; Marciel T. Oliveira; Rebeca Rivas; J. I. Baldani; Ederson Akio Kido; Mauro Guida Santos
The aim of this study was to characterize the key physiological aspects of three sugarcane cultivars (RB92579, RB867515 and RB872552) under biological nitrogen fixation (BNF). Plants were generated in tubes containing aseptic substrates and these plants were transferred to pots containing washed sand, but watered with a mineral fertilizer, and inoculated with a mixture of five diazotrophic bacteria three times at seven-day intervals. Under BNF, all of the cultivars contained half of their total leaf nitrogen content and 50% less shoot dry mass. The leaves of plants under BNF showed approximately 65% less of the total protein content (TP). The gas-exchange control plants had twice the CO2 assimilation rates than the BNF plants. The activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) was increased in all cultivars under BNF when compared with the control; thus, the content of hydrogen peroxide (H2O2) was also increased in these plants. The results of this study indicate that after acclimatization, the inoculation of young plants from tissue culture with diazotrophic bacteria could supply approximately 50% of their nitrogen requirement.