Marcin Baranowski
Medical University of Białystok
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcin Baranowski.
Diabetes | 2010
Tomas Jelenik; Martin Rossmeisl; Ondrej Kuda; Zuzana Macek Jilkova; Dasa Medrikova; Vladimir Kus; Michal Hensler; Petra Janovska; Ivan Mikšík; Marcin Baranowski; Jan Górski; Sophie Hébrard; Thomas E. Jensen; Pavel Flachs; Simon A. Hawley; Benoit Viollet; Jan Kopecky
OBJECTIVE The induction of obesity, dyslipidemia, and insulin resistance by high-fat diet in rodents can be prevented by n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). We tested a hypothesis whether AMP-activated protein kinase (AMPK) has a role in the beneficial effects of n-3 LC-PUFAs. RESEARCH DESIGN AND METHODS Mice with a whole-body deletion of the α2 catalytic subunit of AMPK (AMPKα2−/−) and their wild-type littermates were fed on either a low-fat chow, or a corn oil-based high-fat diet (cHF), or a cHF diet with 15% lipids replaced by n-3 LC-PUFA concentrate (cHF+F). RESULTS Feeding a cHF diet induced obesity, dyslipidemia, hepatic steatosis, and whole-body insulin resistance in mice of both genotypes. Although cHF+F feeding increased hepatic AMPKα2 activity, the body weight gain, dyslipidemia, and the accumulation of hepatic triglycerides were prevented by the cHF+F diet to a similar degree in both AMPKα2−/− and wild-type mice in ad libitum-fed state. However, preservation of hepatic insulin sensitivity by n-3 LC-PUFAs required functional AMPKα2 and correlated with the induction of adiponectin and reduction in liver diacylglycerol content. Under hyperinsulinemic-euglycemic conditions, AMPKα2 was essential for preserving low levels of both hepatic and plasma triglycerides, as well as plasma free fatty acids, in response to the n-3 LC-PUFA treatment. CONCLUSIONS Our results show that n-3 LC-PUFAs prevent hepatic insulin resistance in an AMPKα2-dependent manner and support the role of adiponectin and hepatic diacylglycerols in the regulation of insulin sensitivity. AMPKα2 is also essential for hypolipidemic and antisteatotic effects of n-3 LC-PUFA under insulin-stimulated conditions.
Journal of Cellular Physiology | 2012
Agnieszka Blachnio-Zabielska; M. Pułka; Marcin Baranowski; Agnieszka Nikolajuk; Piotr Zabielski; Maria Gorska; Jan Górski
Ceramide is involved in development of insulin resistance. However, there are no data on ceramide metabolism in human adipose tissue. The aim of our study was to examine sphingolipid metabolism in fat tissue from obese nondiabetic (n = 11), obese diabetic (n = 11), and lean nondiabetic (n = 8) subjects. The content of ceramide (Cer), dihydroceramide (dhCer), sphingosine (SPH), sphinganine (SPA), sphingosine‐1‐phosphate (S1P; pmol/mg of protein), the expression (mRNA) and activity of key enzymes responsible for Cer metabolism: serine palmitoyltransferase (SPT), neutral and acidic sphingomyelinase (nSMase and aSMase, respectively), and neutral and acidic ceramidase (nCDase and aCDase, respectively) were examined in human adipose tissue. The contents of SPA and Cer were significantly lower whereas the content of dhCer was higher in both obese groups than the respective values in the lean subjects. The expression of examined enzymes was elevated in both obese groups. The SPT and CDases activity increased whereas aSMase activity deceased in both obese groups. We have found correlation between adipose tissue Cer content and plasma adiponectin concentration (r = 0.69, P < 0.001) and negative correlation between total Cer content and HOMA‐IR index (homeostasis model of insulin resistance) (r = −0.67, P < 0.001). We have found that both obesity and diabetes affected pathways of sphingolipid metabolism in the adipose tissue. J. Cell. Physiol. 227: 550–557, 2012.
Neuroscience Letters | 2010
Alina Kułakowska; Małgorzata Żendzian-Piotrowska; Marcin Baranowski; Tomasz Konończuk; Wiesław Drozdowski; Jan Górski; Robert Bucki
Sphingosine 1-phosphate (S1P) is a pleiotropic mediator that is critically involved in the development of an inflammatory response in various pathological conditions. We hypothesize that during the course of multiple sclerosis (MS) development, chronic inflammation will result in the alteration of S1P levels in blood and cerebrospinal fluid (CSF). We evaluated S1P concentrations in blood and CSF obtained from 66 subjects, including 40 patients diagnosed with MS and 26 subjects of a control group that included patients diagnosed with idiopathic cephalgia and idiopathic (Bells) facial nerve palsy. HPLC techniques were used to determine S1P levels. We found that S1P concentrations in blood of the MS subject group (361.7+/-150.7 nM) did not differ from those of the control group (371.9+/-142.5 nM). However, S1P concentrations in CSF of the MS group were significantly higher (p<0.01) compared to the control group (2.2+/-2.7 versus 0.69+/-1.1 nM). The increase of S1P concentration in CSF of MS subjects suggests that this bioactive lipid is involved in chronic inflammation associated with MS and it may be useful to study S1P in a number of neurodegenerative diseases to provide better understanding of the mechanisms governing their development.
Journal of Cellular Physiology | 2010
Agnieszka Blachnio-Zabielska; Marcin Baranowski; Piotr Zabielski; Jan Górski
Consumption of high fat diet leads to muscle lipid accumulation which is an important factor involved in induction of insulin resistance. Ceramide is likely to partially inhibit insulin signaling cascade. The aim of this study was to examine the effect of different high fat diets on ceramide metabolism in rat skeletal muscles. The experiments were carried out on rats fed for 5 weeks: (1) a standard chow and (2) high fat diet rich in polyunsaturated fatty acids (PUFA) and (3) diet enriched with saturated fatty acids (SAT). Assays were performed on three types of muscles: slow‐twitch oxidative (soleus), fast‐twitch oxidative–glycolytic, and fast‐twitch glycolytic (red and white section of the gastrocnemius, respectively). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (n‐ and aSMase), and neutral and alkaline ceramidase (n‐ and alCDase) was examined. The content of ceramide, sphinganine, sphingosine, and sphingosine‐1‐phosphate was also measured. The ceramide content did not change in any muscle from PUFA diet group but increased in the SAT diet group by 46% and 52% in the soleus and red section of the gastrocnemius, respectively. Elevated ceramide content in the SAT diet group could be a result of increased SPT activity and simultaneously decreased activity of nCDase. Unchanged ceramide content in the PUFA diet group might be a result of increased activity of SPT and alCDase and simultaneously decreased activity of SMases. We conclude that regulation of muscle ceramide level depends on the diet and type of skeletal muscle. J. Cell. Physiol. 225: 786–791, 2010.
Journal of Lipid Research | 2010
Marcin Baranowski; Agnieszka Blachnio-Zabielska; Tomasz Hirnle; Dorota Harasiuk; Krzysztof Matlak; Małgorzata Knapp; Piotr Zabielski; Jan Górski
Data from animal experiments strongly suggest that ceramide is an important mediator of lipotoxicity in the heart and that accumulation of ceramide contributes to cardiomyocyte apoptosis associated with type 2 diabetes and obesity. However, it remains unknown whether a similar relationship is present also in the human heart. Therefore, we aimed to examine whether myocardial apoptosis in obese and type 2 diabetic patients is associated with elevated ceramide level. The study included 11 lean and 26 overweight or moderately obese subjects without (n = 11, OWT) or with (n = 15, T2D-OWT) a history of type 2 diabetes. Samples of the right atrial appendage were obtained from patients at the time of coronary bypass surgery. Compared with lean subjects, the extent of DNA fragmentation (a marker of apoptosis) was significantly higher in the myocardium of OWT patients and increased further in T2D-OWT subjects. However, the content of ceramide and sphingoid bases remained stable. Interestingly, the mRNA level of enzymes involved in synthesis and degradation of ceramide including serine palmitoyltransferase, sphingosine kinase 1, neutral sphingomyelinase, and ceramidases was markedly higher in the myocardium of OWT and T2D-OWT patients compared with lean subjects. Our results indicate that in the human heart, or at least in the atrium, ceramide is not a major factor in cardiomyocyte apoptosis associated with obesity and type 2 diabetes.
Journal of Lipid Research | 2015
Monika Książek; Marta Chacinska; Adrian Chabowski; Marcin Baranowski
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts either as an intracellular messenger or as a ligand for its membrane receptors. S1P is a normal constituent of blood, where it is found both in plasma and blood cells. Compared with other cell types, sphingolipid metabolism in erythrocytes and platelets has unique features that allow the erythrocytes and platelets to accumulate S1P. In plasma, S1P is bound mainly to HDLs and albumin. Of note, metabolism and biological activity of S1P is to a large extent affected by the type of its carrier. Plasma S1P is characterized by a short half-life, indicating rapid clearance by degradative enzymes and the presence of high-capacity sources involved in maintaining its high concentration. These sources include blood cells, vascular endothelium, and hepatocytes. However, the extent to which each of these contributes to the plasma pool of S1P is a matter of debate. Circulating S1P plays a significant physiological role. It was found to be the key regulator of lymphocyte trafficking, endothelial barrier function, and vascular tone. The purpose of this review is to summarize the present state of knowledge on the metabolism, transport, and origin of plasma S1P, and to discuss the mechanisms regulating its homeostasis in blood.
American Journal of Physiology-cell Physiology | 2010
Robert Bucki; Alina Kułakowska; Fitzroy J. Byfield; Małgorzata Żendzian-Piotrowska; Marcin Baranowski; Michal Marzec; Jessamine Winer; Nicholas J. Ciccarelli; Jan Górski; Wiesław Drozdowski; Robert Bittman; Paul A. Janmey
Hypogelsolinemia is observed in patients with different states of acute or chronic inflammation such as sepsis, rheumatoid arthritis, and multiple sclerosis. In animal models of sepsis, repletion of plasma gelsolin reduces septic mortality. However, the functions of extracellular gelsolin and the mechanisms leading to its protective nature are poorly understood. Potential mechanisms involve gelsolins extracellular actin scavenging function or its ability to bind bioactive lipids or proinflammatory mediators, which would limit inflammatory responses and prevent tissue damage. Here we report that human plasma gelsolin binds to sphingosine 1-phosphate (S1P), a pleiotropic cellular agonist involved in various immune responses, and to its synthetic structural analog FTY720P (Gilenya). The fluorescence intensity of a rhodamine B-labeled phosphatidylinositol 4,5-bisphosphate binding peptide derived from gelsolin and the optical density of recombinant human plasma gelsolin (rhpGSN) were found to decrease after the addition of S1P or FTY720P. Gelsolins ability to depolymerize F-actin also decreased progressively with increasing addition of S1P. Transient increases in phosphorylation of extracellular signal-regulated kinase in bovine aortic endothelial cells (BAECs) after S1P treatment were inhibited by rhpGSN. The ability of S1P to increase F-actin content and the elastic modulus of primary astrocytes and BAECs was also prevented by rhpGSN. Evaluation of S1P and gelsolin levels in cerebrospinal fluid reveals a low concentration of gelsolin and a high concentration of S1P in samples obtained from patients suffering from lymphatic meningitis. These findings suggest that gelsolin-mediated regulation of S1P bioactivity may be important to maintain immunomodulatory balance at inflammatory sites.
Acta Physiologica | 2011
Marcin Baranowski; M. Charmas; B. Długołęcka; Jan Górski
Aim: In recent years, blood sphingolipids attracted much attention and have been implicated in both pathophysiology and prevention of cardiovascular diseases and insulin resistance. However, factors affecting concentration and metabolism of sphingolipids in blood remain poorly recognized. We have previously found that exercise alters skeletal muscle sphingolipid metabolism. This finding prompted us to examine whether physical activity induces similar effects in blood.
Prostaglandins & Other Lipid Mediators | 2010
Paweł Knapp; Marcin Baranowski; Małgorzata Knapp; Piotr Zabielski; Agnieszka Blachnio-Zabielska; Jan Górski
There is a growing body of evidence indicating that bioactive sphingolipids play a key role in cancer development, progression and metastasis. However, sphingolipid metabolism in malignant tumors is poorly investigated. Therefore, the aim of the present study was to examine the content of selected intermediates of ceramide metabolism and the activity of key enzymes of ceramide de novo synthesis and sphingosine-1-phosphate (S1P) production in the endometrial cancer. The specimens of cancer tissue and healthy endometrium were obtained from women undergoing surgery because of the cancer (n=23) and because of myomas (n=18), respectively. The content of sphinganine, dihydroceramide, ceramide, sphingosine and S1P was measured using high pressure liquid chromatography. The activity of the enzymes was determined using radioactive substrates. It has been found that the content of each examined sphingolipid was markedly elevated in the cancer tissue compared with the healthy endometrium. Namely, sphinganine, sphingosine and dihydroceramide by 3-4.6-fold, ceramide and S1P by 1.9- and 1.6-fold, respectively. Interestingly, the ratio of S1P to ceramide remained stable. The activity of serine palmitoyltransferase and sphingosine kinase 1 was increased by 2.3- and 2.6-fold, respectively. We conclude that endometrial carcinoma is characterized by profound changes in sphingolipid metabolism that likely contribute to its progression and chemoresistance.
Acta Physiologica | 2008
Marcin Baranowski; Piotr Zabielski; Agnieszka Blachnio; Jan Górski
Aim: We aimed at gaining more insight into the mechanisms underlying exercise‐induced alterations in myocardial ceramide (CER) content by employing physical activity of various durations and examining all key pathways of CER metabolism.