Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcin Gnyba is active.

Publication


Featured researches published by Marcin Gnyba.


Central European Journal of Physics | 2012

Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds

Justyna Czupryniak; Aleksandra Fabiańska; Piotr Stepnowski; Tadeusz Ossowski; Robert Bogdanowicz; Marcin Gnyba; E.M. Siedlecka

The aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy (SEM) confirmed that the synthesized layer was continuous and formed a densely packed grain structure with an average roughness of less than 0:5 μm. The influence of important electrochemical parameters: current density, kind of reactor, pH or mixing operation, on the efficiency of the oxidation was investigated. The fouling of electrode’s surface caused by the deposition of organic material was observed during CV and galvanostatic experiments. At low current density the oxidation rate constant k was low, but the current efficiency was relatively high. The BDD can be used successfully to remove heterogeneous aromatic compounds existing either as molecules or cations. During 4 h of electrolysis 95% of aromatic compounds were electrochemically decomposed to mineral forms. It was observed that the influence of the initial pH on mineralization was marginal.


Materials Science and Engineering: C | 2016

Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

Paulina Strąkowska; Rene Beutner; Marcin Gnyba; Andrzej Zieliński; Dieter Scharnweber

Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP expression was highest for the uncoated substrate.


ACS Applied Materials & Interfaces | 2017

Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing

Katarzyna Siuzdak; Mateusz Ficek; Michał Sobaszek; Jacek Ryl; Marcin Gnyba; Paweł Niedziałkowski; Natalia Malinowska; Jakub Karczewski; Robert Bogdanowicz

In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3-/4- redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted chemical vapor deposition (CVD) using a gas mixture of H2/CH4/B2H6 and N2. Growth results in sharp-edged, flat, and long CNWs rich in sp2 as well as sp3 hybridized phases. The achieved high values of k° (1.1 × 10-2 cm s-1) and ΔE (85 mV) are much lower compared to those of the glassy carbon or undoped CNWs. The enhanced electrochemical performance of the B:CNW electrode facilitates the simultaneous detection of DNA purine bases: adenine and guanine. Both separated oxidation peaks for the independent determination of guanine and adenine were observed by means of cyclic voltammetry or differential pulse voltammetry. It is worth noting that the determined sensitivities and the current densities were about 1 order of magnitude higher than those registered by other electrodes.


Journal of Innovative Optical Health Sciences | 2016

Blood equivalent phantom vs whole human blood, a comparative study

Katarzyna Karpienko; Marcin Gnyba; D. Milewska; Maciej S. Wróbel; Małgorzata Jędrzejewska-Szczerska

Preclinical research of biomedical optoelectronic devices is often performed with the use of blood phantoms — a simplified physical model of blood. The aim of this study is the comparison and distinction between blood phantoms as well as whole human blood measurements. We show how the use of such phantoms may influence the incorrect interpretation of measured signal. On the other hand, we highlight how the use of blood phantoms enables to investigate the phenomena that otherwise are almost impossible to be noticed.


Journal of The Optical Society of Korea | 2015

Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film

Robert Bogdanowicz; Michał Sobaszek; Mateusz Ficek; Marcin Gnyba; Jacek Ryl; Katarzyna Siuzdak; Wojtek J. Bock; Mateusz Smietana

The fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ℃. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp 3 content in B-NCD films and mean grain size in the range of 100-250 nm. The films deposited on the glass reference samples exhibit high refractive index (n=2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fiber-based electrode. CV measurements in aqueous media consisting of 5 mM K 3 [Fe(CN) 6 ] in 0.5 M Na 2 SO 4 demonstrated a width of the electrochemical window up to 1.03 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing the sensitivity of long-period gratings (LPGs) induced in the fiber. The LPG is capable of measuring variations in refractive index of the surrounding liquid by tracing the shift in resonance appearing in the transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.


Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics | 2015

Raman spectroscopic investigation of blood and related materials

Marcin Gnyba; Małgorzata Jędrzejewska-Szczerska; Maciej S. Wróbel

This paper reports preliminary studies on use of Raman spectroscopy for investigation of blood. High quality blood spectra were recorded in-vitro with excitation wavelengths of 830 nm. Because of complex composition of the blood as well as by light attenuation and scattering in the tissues, spectra set up from wide, low-intensive Raman bands and intensive optical background. To get information about origin of bands in Raman spectra it is necessary to create phantom, which would show influence of this parameter and can be used to calibrate the Raman measurement system. Spectra of phantoms of selected blood components were acquired and discussed.


Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments | 2003

Optical investigation of molecular structure of sophisticated materials for photonics

Marcin Gnyba; Mikko Keraenen

Permanent development of photonics stimulates a searching for new materials, which have better optical, mechanical and electrical properties. One of the new classes of materials with large application and development potential are hybrid polymers, synthesized in sol-gel technology. Thanks to incorporation of organic components into an in organic network, a combination of advantages of both class of materials became available. Properties of hybrids may be formed in wide range. These materials can be used in photonics to produce planar waveguides, lenses, Bragg gratings and components for integrated optics. Moreover, dielectric layers, coatings and packaging are made from hybrids. Additionally, research to apply them in optical fiber sensors (including bio-sensors) and solid state lasers is underway. However, to obtain a high quality product, a strict control of its molecular structure must be ensured. This is a very difficult task, because of a sophisticated structure of hybrid polymers. To address these problems, optical, non-destructive measurement techniques such as Raman and infrared spectroscopy were used. They are compementary methods, so their simultaneous application, as it was shown in this paper, can significantly increase the amoung of information about molecular structure of materials and process of their synthesis.


Novel Biophotonics Techniques and Applications III (2015), paper 95400Q | 2015

Optical properties of the chemotherapy drugs used in the central nervous system lymphoma therapy: monitoring drug delivery

Teemu Myllylä; Alexey P. Popov; L. Surazyński; J. Oinas; O. Bibikova; Alexander Bykov; Maciej S. Wróbel; Marcin Gnyba; Małgorzata Jędrzejewska-Szczerska; Igor Meglinski; Outi Kuittinen

Our aim is to optically monitor the delivery of the chemotherapy drugs for brain tumours, particularly used in the central nervous system (CNS) lymphoma therapy. In vivo monitoring would help to optimize the treatment and avoiding unnecessary medications. Moreover, it would be beneficial to be able to measure which of the multi-regimen drugs actually do penetrate and how well into the brain tissue. There exist several potential optical measurement techniques to be utilised for the purpose. The most desired method would allow the detection of the drugs without using optical biomarkers as a contrast agent. In this case, for non-invasive sensing of the drug in the brain cortex, the drug should have a reasonably strong optical absorption band somewhere in the range between 600 nm and 1700 nm, and not directly coincident with the strong bands of haemoglobin or water. Alternatively, mid-infrared (MIR) range has the potential for invasive drug monitoring techniques. In this paper, we report the optical properties of several chemotherapy drugs used in CNS lymphoma therapy, such as rituximabi, cyclophosphamide and etoposide. We measured their transmittance and reflectance spectra in near-infrared (NIR) range, particularly 900 nm − 2500 nm, to be considered when choosing the in vivo monitoring method to be developed. The absorption and scattering coefficients were retrieved from the measurements and applying Beer’s law. For the measurement of the sum of total transmission and reflection in NIR range we used integrating sphere with spektralo to enable calculation of the scattering coefficient.


Fifth Asia Pacific Optical Sensors Conference | 2015

Nanocrystalline diamond microelectrode on fused silica optical fibers for electrochemical and optical sensing

Robert Bogdanowicz; Michał Sobaszek; Mateusz Ficek; Marcin Gnyba; Jacek Ryl; Katarzyna Siuzdak; Mateusz Śmietana

Fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrode on fused silica single mode optical fiber has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with the mean grain size in the range of 100-250 nm and high sp3 content in B-NCD films. The films deposited on glass reference samples exhibit high refractive index (n≈2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fibre-based electrode. Cyclic voltammetry (CV) measurements in aqueous media consisting of 5mM K3[Fe(CN)6] in 0.1M Na2SO4 demonstrated a width of the electrochemical window up to 2.5 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing sensitivity of long-period gratings (LPGs) induced in the fibers. The LPG is capable for measuring variations in refractive index of surrounding liquid by tracing shift in resonance appearing in transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.


Biomedical spectroscopy and imaging | 2015

Detection of propofol concentrations in blood by Raman spectroscopy

Maciej S. Wróbel; Marcin Gnyba; R. Urniaż; Teemu Myllylä; Małgorzata Jędrzejewska-Szczerska

In this paper we present a proof-of-concept of a Raman spectroscopy-based approach for measuring the content of propofol, a common anesthesia drug, in whole human blood, and plasma, which is intended for use during clinical procedures. This method utilizes the Raman spectroscopy as a chemically–sensitive method for qualitative detection of the presence of a drug and a quantitative determination of its concentration. A number of samples from different patients with added various concentrations of propofol IV solution were measured. This is most equivalent to a real in-vivo situation. Subsequent analysis of a set of spectra was carried out to extract qualitative and quantitative information. We conclude, that the changes in the spectra of blood with propofol, overlap with the most prominent lines of the propofol solution, especially at spectral regions: 1450 cm-1, 1250- 1260 cm-1, 1050 cm-1, 875-910 cm-1, 640 cm-1. Later, we have introduced a quantitative analysis program based on correlation matrix closest fit, and a LOO cross-validation. We have achieved 36.67% and 60% model precision when considering full spectra, or specified bands, respectively. These results prove the possibility of using Raman spectroscopy for quantitative detection of propofol concentrations in whole human blood.

Collaboration


Dive into the Marcin Gnyba's collaboration.

Top Co-Authors

Avatar

Robert Bogdanowicz

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michał Sobaszek

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jacek Ryl

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Maciej S. Wróbel

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mateusz Ficek

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Janusz Smulko

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pawel Wierzba

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mikko Keränen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Andrzej Kwiatkowski

Gdańsk University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge