Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcin Król is active.

Publication


Featured researches published by Marcin Król.


Blood | 2011

Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity

Marc N. Offman; Marcin Król; Naina Patel; Shekhar Krishnan; Jizhong Liu; Vaskar Saha; Paul A. Bates

Using proteins in a therapeutic context often requires engineering to modify functionality and enhance efficacy. We have previously reported that the therapeutic antileukemic protein macromolecule Escherichia coli L-asparaginase is degraded by leukemic lysosomal cysteine proteases. In the present study, we successfully engineered L-asparaginase to resist proteolytic cleavage and at the same time improve activity. We employed a novel combination of mutant sampling using a genetic algorithm in tandem with flexibility studies using molecular dynamics to investigate the impact of lid-loop and mutations on drug activity. Applying these methods, we successfully predicted the more active L-asparaginase mutants N24T and N24A. For the latter, a unique hydrogen bond network contributes to higher activity. Furthermore, interface mutations controlling secondary glutaminase activity demonstrated the importance of this enzymatic activity for drug cytotoxicity. All selected mutants were expressed, purified, and tested for activity and for their ability to form the active tetrameric form. By introducing the N24A and N24A R195S mutations to the drug L-asparaginase, we are a step closer to individualized drug design.


Journal of Clinical Investigation | 2009

A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug L-asparaginase.

Naina Patel; Shekhar Krishnan; Marc N. Offman; Marcin Król; Catherine X. Moss; Carly Leighton; Frederik W. van Delft; Mark Holland; Jizhong Liu; Seema Alexander; Clare Dempsey; Hany Ariffin; Monika Essink; Tim O B Eden; Colin Watts; Paul A. Bates; Vaskar Saha

l-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative. Here, we now report that 2 lysosomal cysteine proteases present in lymphoblasts are able to degrade l-asparaginase. Cathepsin B (CTSB), which is produced constitutively by normal and leukemic cells, degraded asparaginase produced by Escherichia coli (ASNase) and Erwinia chrysanthemi. Asparaginyl endopeptidase (AEP), which is overexpressed predominantly in high-risk subsets of ALL, specifically degraded ASNase. AEP thereby destroys ASNase activity and may also potentiate antigen processing, leading to allergic reactions. Using AEP-mediated cleavage sequences, we modeled the effects of the protease on ASNase and created a number of recombinant ASNase products. The N24 residue on the flexible active loop was identified as the primary AEP cleavage site. Sole modification at this site rendered ASNase resistant to AEP cleavage and suggested a key role for the flexible active loop in determining ASNase activity. We therefore propose what we believe to be a novel mechanism of drug resistance to ASNase. Our results may help to identify alternative therapeutic strategies with the potential of further improving outcome in childhood ALL.


Proteins | 2007

Implicit flexibility in protein docking: Cross‐docking and local refinement

Marcin Król; Raphael Chaleil; Alexander L. Tournier; Paul A. Bates

In previous CAPRI rounds (3–5) we showed that using MD‐generated ensembles, as inputs for a rigid‐body docking algorithm, increased our success rate, especially for targets exhibiting substantial amounts of induced fit. In recent rounds (6–11), our cross‐docking was followed by a short MD‐based local refinement for the subset of solutions with the lowest interaction energies after minimization. The above approach showed promising results for target 20, where we were able to recover 30% of native contacts for one of our submitted models. Further tests, performed a posteriori, revealed that cross‐docking approach produces more near‐native (NN) solutions but only for targets with large conformational changes upon binding. However, at the time of the blind docking experiment, these improved solutions were not chosen for the subsequent refinement, as their interaction energies after minimization ranked poorly compared with other solutions. This indicates deficiencies in the present scoring schemes that are based on interaction energies of minimized structures. Refinement MD simulations substantially increase the fraction of native contacts for NN docked solutions, but generally worsen interface and ligand RMSD. Further analysis shows that although MD simulations are able to improve sidechain packing across the interface, which results in an increased fraction of native contacts, they are not capable of improving interface and ligand backbone RMSD for NN structures beyond 1.5 and 3.5 Å, respectively, even if explicit solvent is used. Proteins 2007.


Proteins | 2007

Flexible relaxation of rigid-body docking solutions.

Marcin Król; Alexander L. Tournier; Paul A. Bates

Molecular Dynamics (MD) simulations have been performed on a set of rigid‐body docking poses, carried out over 25 protein–protein complexes. The results show that fully flexible relaxation increases the fraction of native contacts (NC) by up to 70% for certain docking poses. The largest increase in the fraction of NC is observed for docking poses where anchor residues are able to sample their bound conformation. For each MD simulation, structural snap‐shots were clustered and the centre of each cluster used as the MD‐relaxed docking pose. A comparison between two energy‐based scoring schemes, the first calculated for the MD‐relaxed poses, the second for energy minimized poses, shows that the former are better in ranking complexes with large hydrophobic interfaces. Furthermore, complexes with large interfaces are generally ranked well, regardless of the type of relaxation method chosen, whereas complexes with small hydrophobic interfaces remain difficult to rank. In general, the results indicate that current force‐fields are able to correctly describe direct intermolecular interactions between receptor and ligand molecules. However, these force‐fields still fail in cases where protein–protein complexes are stabilized by subtle energy contributions. Proteins 2007.


Journal of Biological Chemistry | 2010

Molecular Basis of Reduced Glucosylceramidase Activity in the Most Common Gaucher Disease Mutant, N370S !

Marc N. Offman; Marcin Król; Israel Silman; Joel L. Sussman; Anthony H. Futerman

Gaucher disease is caused by the defective activity of the lysosomal hydrolase, glucosylceramidase. Although the x-ray structure of wild type glucosylceramidase has been resolved, little is known about the structural features of any of the >200 mutations. Various treatments for Gaucher disease are available, including enzyme replacement and chaperone therapies. The latter involves binding of competitive inhibitors at the active site to enable correct folding and transport of the mutant enzyme to the lysosome. We now use molecular dynamics, a set of structural analysis tools, and several statistical methods to determine the flexible behavior of the N370S Gaucher mutant at various pH values, with and without binding the chaperone, N-butyl-deoxynojirimycin. We focus on the effect of the chaperone on the whole protein, on the active site, and on three important structural loops, and we demonstrate how the chaperone modifies the behavior of N370S in such a way that it becomes more active at lysosomal pH. Our results suggest a mechanism whereby the binding of N-butyl-deoxynojirimycin helps target correctly folded glucosylceramidase to the lysosome, contributes to binding with saposin C, and explains the initiation of the substrate-enzyme complex. Such analysis provides a new framework for determination of the structure of other Gaucher disease mutants and suggests new approaches for rational drug design.


Biopolymers | 2001

Heat-induced formation of a specific binding site for self-assembled congo red in the V domain of immunoglobulin L chain ?

Barbara Piekarska; Leszek Konieczny; Rybarska J; Barbara Stopa; Grzegorz Zemanek; Edward Szneler; Marcin Król; Nowak M; Irena Roterman

Moderate heating (40–50°C) of immunoglobulins makes them accessible for binding with Congo Red and some related highly associated dyes. The binding is specific and involves supramolecular dye ligands presenting ribbon‐like micellar bodies. The L chain λ dimer, which upon heating disclosed the same binding requirement with respect to supramolecular dye ligands, was used in this work to identify the site of their attachment. Two clearly defined dye–protein (L λ chain) complexes arise upon heating, here called complex I and complex II. The first is formed at low temperatures (up to 40–45°C) and hence by a still native protein, while the formation of the second one is associated with domain melting above 55°C. They contain 4 and 8 dye molecules bound per L chain monomer, respectively. Complex I also forms efficiently at high dye concentration even at ambient temperature. Complex I and its formation was the object of the present studies. Three structural events that could make the protein accessible to penetration by the large dye ligand were considered to occur in L chains upon heating: local polypeptide chain destabilization, VL‐VL domain incoherence, and protein melting. Of these three possibilities, local low‐energy structural alteration was found to correlate best with the formation of complex I. It was identified as decreased packing stability of the N‐terminal polypeptide chain fragment, which as a result made the V domain accessible for dye penetration. The 19‐amino acid N‐terminal fragment becomes susceptible to proteolytic cleavage after being replaced by the dye at its packing locus. Its splitting from the dye–protein complex was proved by amino acid sequence analysis. The emptied packing locus, which becomes the site that holds the dye, is bordered by strands of amino acids numbered 74–80 and 105–110, as shown by model analysis. The character of the temperature‐induced local polypeptide chain destabilization and its possible role in intramolecular antibody signaling is discussed.


Chemical Biology & Drug Design | 2007

Research Article: The Use of Rigid, Fibrillar Congo Red Nanostructures for Scaffolding Protein Assemblies and Inducing the Formation of Amyloid‐like Arrangement of Molecules

Paweł Spólnik; Barbara Stopa; Barbara Piekarska; Anna Jagusiak; Leszek Konieczny; Janina Rybarska; Marcin Król; Irena Roterman; Barbara Urbanowicz; Janina Zięba-Palus

The ordered amyloid‐like organization of protein aggregates was obtained using for their formation the rigid fibrillar nanostructures of Congo red as the scaffolding. The higher rigidity of used dye nanoparticles resulted from the stronger stacking of molecules at low pH (near the pK of the dye amino group) because of the decreased charge repulsion. The polylysine, human globin, and immunoglobulin L chain were arranged in this way to form deposits of amyloid properties. The scaffolding was introduced simply by mixing the dye and proteins at a low pH or the dye was used in the preorganized form by maintaining it in the electric field before and during protein addition. The polarization and electron microscopy studies confirmed the unidirectional organization of the complex. The precipitate of the complex was used for studies directly or after the partial or complete removal of the dye. The results suggest that the process of formation of amyloid‐like deposits may bypass the nucleation step. It is possible if the protein aggregation occurs in unidirectionally organized (because of scaffolding) assembly of molecules, arranged prior to self‐association. The recognition of the structure of amphoteric Congo red nanoparticles used for the scaffolding was based on the molecular dynamics simulation.


Journal of Computer-aided Molecular Design | 2004

Force-field parametrization and molecular dynamics simulations of Congo red

Marcin Król; Tomasz Borowski; Irena Roterman; Barbara Piekarska; Barbara Stopa; Rybarska J; Leszek Konieczny

Congo red, a diazo dye widely used in medical diagnosis, is known to form supramolecular systems in solution. Such a supramolecular system may interact with various proteins. In order to examine the nature of such complexes empirical force field parameters for the Congo red molecule were developed. The parametrization of bonding terms closely followed the methodology used in the development of the charmm22 force field, except for the calculation of charges. Point charges were calculated from a fit to a quantum mechanically derived electrostatic potential using the CHELP-BOW method. Obtained parameters were tested in a series of molecular dynamics simulations of both a single molecule and a micelle composed of Congo red molecules. It is shown that newly developed parameters define a stable minimum on the hypersurface of the potential energy and crystal and ab initio geometries and rotational barriers are well reproduced. Furthermore, rotations around C-N bonds are similar to torsional vibrations observed in crystals of diphenyl-diazene, which confirms that the flexibility of the molecule is correct. Comparison of results obtained from micelles molecular dynamics simulations with experimental data shows that the thermal dependence of micelle creation is well reproduced.


Journal of Computational Chemistry | 2003

Comparison of various implicit solvent models in molecular dynamics simulations of immunoglobulin G light chain dimer

Marcin Król

The present study tests performance of different solvation models applied to molecular dynamics simulation of a large, dimeric protein molecule. Analytical Continuum Electrostatics (ACE) with two different parameter sets, older V98 and new V01, and Effective Energy Function (EEF) are employed in molecular dynamics simulation of immunoglobulin G (IgG) light chain dimer and variable domain of IgG light chain. Results are compared with explicit solvent and distance dependent dielectric constant (DDE) calculations. The overall analysis shows that the EEF method yields results comparable to explicit solvent simulations; however, the stability of simulations is lower. On the other hand, the ACE_V98 model does not seem to achieve the accuracy or stability expected in nanosecond timescale MD simulation for the studied systems. The ACE_V01 model greatly improves stability of the calculation; nonetheless, changes in radius of gyration and solvent accessible surface of the studied systems may indicate that the parameter set still needs to be improved if the method is supposed to be used for simulations of large, polymeric proteins. Additionally, electrostatic contribution to the solvation free energy calculated in the ACE model is compared with a numerical treatment of the dielectric continuum model. Wall clock time of all simulations is compared. It shows that EEF calculation is six times faster than corresponding ACE and 50 times faster than explicit solvent simulations.


Chemical Biology & Drug Design | 2006

The indirect generation of long-distance structural changes in antibodies upon their binding to antigen

Barbara Piekarska; Anna Drozd; Leszek Konieczny; Marcin Król; Wiktor Jurkowski; Irena Roterman; Paweł Spólnik; Barbara Stopa; Janina Rybarska

An allosteric mechanism for the generation of long‐distance structural alterations in Fab fragments of antibodies in immune complexes has been postulated and tested in theoretical and experimental analysis. The flexing and/or torsion‐derived forces exerted on the elbow region in Fab arms of bivalent antibodies upon binding to antigen were assumed to drive the disruption of hydrogen bonds which stabilize N‐ and C‐terminal chain fragments in V‐domains. This allows an extra movement in the elbow followed by a relaxation in the Fab arm and may generate long‐distance effects if, in particular, the structural changes are generated asymmetrically involving one chain of the Fab arm only. This mechanism was studied by simulation of molecular dynamics. The local instability in the area involving the site of packing of the N‐terminal chain fragment allows penetration and binding of the supramolecular dye Congo red that hence becomes an indicator of the initiated relaxation process and is also the prospective ligand in studies of designing drugs. The susceptibility to dye binding was observed in complexation of bivalent antibodies only, supplying the evidence that constraints associating the interaction with randomly distributed antigenic determinants drive the local structural changes in the V‐domain followed by long‐distance effects.

Collaboration


Dive into the Marcin Król's collaboration.

Top Co-Authors

Avatar

Barbara Piekarska

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leszek Konieczny

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Irena Roterman

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Paweł Spólnik

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rybarska J

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Anna Drozd

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Anna Jagusiak

Jagiellonian University Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge