Marcin Talar
Medical University of Łódź
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcin Talar.
European Journal of Pharmacology | 2013
Tomasz Przygodzki; Marcin Talar; Cezary Watala
The role of cyclooxygenase-2 (COX-2) in restoring the functions of impaired endothelium is attracting considerable attention, notably the function of COX-2-derived vasodilatory prostaglandins is disputed in the context of the regulation function in the impaired vascular beds. We have examined the hypothesis that COX-2 activity contributes more to vasodilation in hyperglycemic animals than in healthy counterparts, and that COX-2 derived vasodilatory prostaglandins (PGI(2) and PGE(2)) are responsible for this effect. Using the Langendorff heart perfusion system, the effects of COX-2 inhibition were monitored on both basal and bradykinin-induced coronary flows in Sprague-Dawley rats given 8-week streptozotocin-induced diabetes and in age-matched controls (n=15). Secretions of PGI(2) and PGE(2), both total and the COX-2 dependent pools, have also been compared. The selective COX-2 inhibitor, N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398), had no effect on coronary flow in the diabetic group of animals. Thus, the compensatory role of COX-2 in regulation of vascular tone in experimental diabetes found in other experimental models was not confirmed. However, COX-2 activity significantly contributed to PGI(2) synthesis in healthy rats, with prostacyclin secretion being two-fold decreased by NS-398. Contrary to our hypothesis, neither prostacyclin nor PGE(2) production differed between the experimental groups under the basal conditions. Bradykinin had no effect on the secretion of PGI(2) in either group, but increased PGE(2) synthesis in healthy animals, although not in the streptozotocin group. PGE(2) production in response to bradykinin was COX-2-dependent in control animals. We conclude that, in rats with 8-week streptozotocin-induced diabetes, the activity of COX-2 in coronary vasculature is not significantly enhanced.
PLOS ONE | 2016
Beata Talar; Anna Gajos-Michniewicz; Marcin Talar; Salem Chouaib; Malgorzata Czyz
Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response to treatment was only recently recognized. Using patient-derived melanoma cell populations, we investigated the influence of pentoxifylline on melanoma cells with either high or low expression of β-catenin. Findings Our results indicate that pentoxifylline inhibits the activity of the canonical WNT pathway in melanoma cell populations with high basal activity of this signalling. This is supported by lowered overall activity of transcription factors TCF/LEF and reduced nuclear localisation of active β-catenin. Moreover, treatment of β-cateninhigh melanoma cell populations with pentoxifylline induces downregulation of genes that are targets of the WNT/β-catenin pathway including connective tissue growth factor (CTGF) and microphthalmia-associated transcription factor (MITF-M), a melanocyte- and melanoma cell-specific regulator. Conclusions These results suggest that pentoxifylline, a drug approved by the FDA in the treatment of peripheral arterial disease, might be tested in a subset of melanoma patients with elevated activity of β-catenin. This pharmaceutical might be tested as an adjuvant drug in combination therapies when the response to immunotherapy is prevented by high activity of the WNT/β-catenin pathway.
Platelets | 2016
Karolina Siewiera; Hassan Kassassir; Marcin Talar; Lukasz Wieteska; Cezary Watala
Abstract In diabetes-related states of chronic hyperglycaemia elevated concentrations of glucose may alter the functioning of platelet enzymes involved in arachidonic acid metabolism, including prostaglandin H2 synthase (cyclooxygenase) (PGHS, COX). Therefore, the principal aim of this study was to assess the effects of experimental chronic hyperglycaemia on platelet PGHS-1 (COX-1) expression and activity. Blood platelet activation and reactivity were assessed in Sprague–Dawley rats with the 5-month streptozotocin (STZ) diabetes. The PGHS-1 abundance in platelets was evaluated with flow cytometry and Western blotting, while its activity monitored using a high resolution respirometry and the peroxidase fluorescent assay. The production of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) in platelets were assayed immunoenzymatically. Circulating platelets from diabetic were characterised by increased size, elevated ‘priming’ and altered reactivity, compared to non-diabetic animals. Both Western blot analysis and flow cytometry revealed significantly elevated expressions of platelet PGHS-1 in STZ-diabetic rats (p < 0.05). We also observed significantly elevated platelet PGHS-1-related arachidonic acid metabolism in diabetic vs. non-diabetic animals, with the use of polarographic (p < 0.05) and total activity assay (p < 0.001). Such increases were accompanied by the elevated production of PGE2 (p < 0.001) and TXB2 (p < 0.05) in diabetic animals. The increased PGHS-1-dependent oxygen consumption and the total activity of PGHS-1 in diabetic animals remained very significant (p < 0.001) also upon adjusting for blood platelet PGHS-1 abundance. Therefore, our results further contribute to the explanation of the increased metabolism of arachidonic acid observed in diabetes.
Life Sciences | 2016
Karolina Siewiera; Hassan Kassassir; Marcin Talar; Lukasz Wieteska; Cezary Watala
AIMS The high glucose concentration observed in diabetic patients is a recognized factor of mitochondrial damage in various cell types. Its impact on mitochondrial bioenergetics in blood platelets remains largely vague. The aim of the study was to determine how the metabolism of carbohydrates, which has been impaired by streptozotocin-induced diabetes may affect the functioning of platelet mitochondria. MATERIALS AND METHODS Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Platelet mitochondrial respiratory capacity was monitored as oxygen consumption (high-resolution respirometry). Mitochondrial membrane potential was assessed using a fluorescent probe, JC-1. Activation of circulating platelets was monitored by flow cytometry measuring of the expressions of CD61 and CD62P on a blood platelet surface. To determine mitochondrial protein density in platelets, Western Blot technique was used. KEY FINDINGS The results indicate significantly elevated mitochondria mass, increased mitochondrial membrane potential (ΔΨm) and enhanced respiration in STZ-diabetic animals, although the respiration control ratios appear to remain unchanged. Higher ΔΨm and elevated mitochondrial respiration were closely related to the excessive activation of circulating platelets in diabetic animals. SIGNIFICANCE Long-term diabetes can result in increased mitochondrial mass and may lead to hyperpolarization of blood platelet mitochondrial membrane. These alterations may be a potential underlying cause of abnormal platelet functioning in diabetes mellitus and hence, a potential target for antiplatelet therapies in diabetes.
PLOS ONE | 2016
Tomasz Przygodzki; Marcin Talar; Agnieszka Blazejczyk; Vyacheslav Kalchenko; Cezary Watala
Introduction The paper describes an alternative method for quantification of in vivo ADP-induced thromboembolism. The aim of the studies was to develop a method of quantification which would not require either extravasation or labelling of platelets. Our proposed approach is based on the monitoring of changes of blood flow with the use of laser Doppler flowmetry. Materials and Methods Mice of C57Bl strain were used in the study. ADP was injected to the vena cava and blood flow was monitored with the use of a laser Doppler flowmeter in the mesentery. Measurements in platelet-depleted mice, mice pretreated with cangrelor, an ADP receptor antagonist, and eptifibatide, a blocker of fibrinogen binding to GPIIbIIIa, were conducted as the proof-of-concept in the performed experiments. Intravital microscopy and ex vivo imaging of organs was performed to identify the sites of aggregate formation resulting from ADP injection. Results The injection of ADP resulted in a dose-dependent reduction of the blood flow in the mesentery. These responses were fully attributable to blood platelet aggregation, as shown by the lack of the effect in platelet-depleted mice, and significantly reduced responses in mice pretreated with cangrelor and eptifibatide. No platelet aggregate formation in mesenteric vessels was revealed by intravital microscopy, while ex vivo imaging showed accumulation of fluorescent labelled platelets in the lung. Conclusions Injection of ADP to the venous system results in the formation of platelet aggregates predominantly in the lung. This results in reversible blood flow cessation in peripheral blood vessels. The measurement of this blood flow cessation in the mesentery allows indirect measurement of ADP-induced pulmonary thromboembolism. We suggest that this approach can be useful for in vivo screening for antiplatelet drug candidates.
Platelets | 2018
Tomasz Przygodzki; Marcin Talar; Hassan Kassassir; Lukasz Mateuszuk; Jacek Musial; Cezary Watala
Abstract Numerous in vitro experiments have confirmed that a dysfunctional endothelium is characterized by, inter alia, a higher affinity for binding of platelets and leukocytes. However, there is still no direct evidence for greater interaction between platelets and intact endothelium in in vivo animal models of diabetes. Therefore, the present study examines the pro-adhesive properties of endothelium change in vivo as an effect of streptozotocin (STZ)-induced diabetes and the role of two key platelet receptors: GPIb-IX-V and GPIIb/IIIa. Mice of C57BL strain with streptozotocin-induced diabetes were used in the study. Flow cytometry was used to assess basal activation and reactivity of platelets. Adhesion of platelets to the vascular wall was visualized with the use of intravital microscopy in mesentery. The contribution of GPIIb/IIIa and GPIb-IX-V was evaluated by the injection of Fab fragments of respective antibodies. The integrity of the endothelium and vWf expression were evaluated histochemically. Basal activation and reactivity of platelets in streptozotocin-diabetic mice were elevated. Blood platelets adhered more often to the vascular wall of diabetic mice than nondiabetic animals: 11.9 (6.4; 32.8) plt/min/mm2 (median [IQR]) vs 2.7 (1.3; 6.4) plt/min/mm2. The injection of anti-GPIbα antibodies decreased the number of adhering platelets from 89.5 (34.0; 113.1) plt/min/mm2 (median [IQR]) in mice treated with isotype antibodies to 3.1 (1.7; 5.6) plt/min/mm2 in mice treated with blocking antibodies. The effect of GPIIb/IIIa blockage was not significant. Immunohistochemistry revealed a higher expression of vWF in the endothelium of STZ mice, but no substantial changes in endothelial morphology were detected. To conclude, the study shows that the platelets interact more frequently with the mesenteric vascular bed in mice with 1-month STZ-induced diabetes than in healthy mice. These interactions are mediated via platelet GPIb-IX-V and are driven by increased expression of vWF in endothelial cells.
Blood Cells Molecules and Diseases | 2017
Hassan Kassassir; Karolina Siewiera; Marcin Talar; Tomasz Przygodzki; Cezary Watala
INTRODUCTION Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. RESULTS We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. CONCLUSIONS The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice.
Journal of Physiology and Biochemistry | 2015
Tomasz Przygodzki; Marcin Talar; Patrycja Przygodzka; Cezary Watala
International Journal of Pharmaceutics | 2016
Cezary Watala; Kamil Karolczak; Hassan Kassassir; Marcin Talar; Tomasz Przygodzki; Katarzyna Maczynska; Magdalena Labieniec-Watala
Archive | 2018
Anna Babinska; Cristina C. Clement; Tomasz Przygodzki; Marcin Talar; Maria Swiatkowska; Yigal H. Ehrlich; Elizabeth Kornecki; Cezary Watala; Moro O. Salifu