Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcio Dias Lima is active.

Publication


Featured researches published by Marcio Dias Lima.


Science | 2009

Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles

Ali E. Aliev; Jiyoung Oh; Mikhail E. Kozlov; Alexander Kuznetsov; Shaoli Fang; Alexandre F. Fonseca; Raquel Ovalle; Marcio Dias Lima; Mohammad H. Haque; Yuri N. Gartstein; Mei Zhang; Anvar A. Zakhidov; Ray H. Baughman

Improved electrically powered artificial muscles are needed for generating force, moving objects, and accomplishing work. Carbon nanotube aerogel sheets are the sole component of new artificial muscles that provide giant elongations and elongation rates of 220% and (3.7 × 104)% per second, respectively, at operating temperatures from 80 to 1900 kelvin. These solid-state–fabricated sheets are enthalpic rubbers having gaslike density and specific strength in one direction higher than those of steel plate. Actuation decreases nanotube aerogel density and can be permanently frozen for such device applications as transparent electrodes. Poissons ratios reach 15, a factor of 30 higher than for conventional rubbers. These giant Poissons ratios explain the observed opposite sign of width and length actuation and result in rare properties: negative linear compressibility and stretch densification.


Nature Communications | 2013

Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices

Jae Ah Lee; Min-Kyoon Shin; Shi Hyeong Kim; Hyun U Cho; Geoffrey M. Spinks; Gordon G. Wallace; Marcio Dias Lima; Xavier Lepró; Mikhail E. Kozlov; Ray H. Baughman; Seon Jeong Kim

Flexible, wearable, implantable and easily reconfigurable supercapacitors delivering high energy and power densities are needed for electronic devices. Here we demonstrate weavable, sewable, knottable and braidable yarns that function as high performance electrodes of redox supercapacitors. A novel technology, gradient biscrolling, provides fast-ion-transport yarn in which hundreds of layers of conducting-polymer-infiltrated carbon nanotube sheet are scrolled into ~20 μm diameter yarn. Plying the biscrolled yarn with a metal wire current collector increases power generation capabilities. The volumetric capacitance is high (up to ~179 F cm(-3)) and the discharge current of the plied yarn supercapacitor linearly increases with voltage scan rate up to ~80 V s(-1) and ~20 V s(-1) for liquid and solid electrolytes, respectively. The exceptionally high energy and power densities for the complete supercapacitor, and high cycle life that little depends on winding or sewing (92%, 99% after 10,000 cycles, respectively) are important for the applications in electronic textiles.


Science | 2014

Artificial Muscles from Fishing Line and Sewing Thread

Carter S. Haines; Marcio Dias Lima; Na Li; Geoffrey M. Spinks; Javad Foroughi; John D. W. Madden; Shi Hyeong Kim; Shaoli Fang; Monica Jung de Andrade; Fatma Göktepe; Özer Göktepe; Seyed M. Mirvakili; Sina Naficy; Xavier Lepró; Jiyoung Oh; Mikhail E. Kozlov; Seon Jeong Kim; Xiuru Xu; Benjamin J. Swedlove; Gordon G. Wallace; Ray H. Baughman

Toward an Artificial Muscle In designing materials for artificial muscles, the goals are to find those that will combine high strokes, high efficiency, long cycle life, low hysteresis, and low cost. Now, Haines et al. (p. 868; see the Perspective by Yuan and Poulin) show that this is possible. Twisting high-strength, readily available polymer fibers, such as those used for fishing lines or sewing thread, to the point where they coil up, allowed construction of highly efficient actuators that could be triggered by a number of stimuli. Polymer fibers can be transformed into highly efficient artificial muscles through the application of extreme twist. [Also see Perspective by Yuan and Poulin] The high cost of powerful, large-stroke, high-stress artificial muscles has combined with performance limitations such as low cycle life, hysteresis, and low efficiency to restrict applications. We demonstrated that inexpensive high-strength polymer fibers used for fishing line and sewing thread can be easily transformed by twist insertion to provide fast, scalable, nonhysteretic, long-life tensile and torsional muscles. Extreme twisting produces coiled muscles that can contract by 49%, lift loads over 100 times heavier than can human muscle of the same length and weight, and generate 5.3 kilowatts of mechanical work per kilogram of muscle weight, similar to that produced by a jet engine. Woven textiles that change porosity in response to temperature and actuating window shutters that could help conserve energy were also demonstrated. Large-stroke tensile actuation was theoretically and experimentally shown to result from torsional actuation.


Science | 2012

Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles

Marcio Dias Lima; Na Li; Monica Jung de Andrade; Shaoli Fang; Jiyoung Oh; Geoffrey M. Spinks; Mikhail E. Kozlov; Carter S. Haines; Dongseok Suh; Javad Foroughi; Seon Jeong Kim; Yongsheng Chen; Taylor Ware; Min Kyoon Shin; Leonardo D. Machado; Alexandre F. Fonseca; John D. W. Madden; Walter Voit; Douglas S. Galvao; Ray H. Baughman

Nanotube Yarn Actuators Actuators are used to convert heat, light, or electricity into a twisting or tensile motion, and are often described as artificial muscles. Most materials that show actuation either provide larger forces with small-amplitude motions, such as the alloy NiTi, or provide larger motions with much less force, such as polymeric materials. Other problems with such actuators can include slow response times and short lifetimes. Lima et al. (p. 928, see the Perspective by Schulz) show that a range of guest-filled, twist-spun carbon nanotube yarns can be used for linear or torsional actuation, can solve the problems of speed and lifetime, and do not require electrolytes for operation. Thermally driven actuators use a guest material within carbon nanotube yarns to generate fast torsional and tensile motions. Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.


Advanced Materials | 2013

Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode

Hee-Dae Lim; Kyu Young Park; Hyelynn Song; Eui Yun Jang; Hyeokjo Gwon; Jin-Soo Kim; Yong Hyup Kim; Marcio Dias Lima; Raquel Ovalle Robles; Xavier Lepró; Ray H. Baughman; Kisuk Kang

Recently Li-air batteries have been considered to be a promising candidate for EV and HEV applications due to their exceptionally high energy density. A key factor for the practical application of Li-air batteries is to solve the poor reversibility of nonconductive discharge products, which remains a significant limiting factor for Li-air batteries. Therefore, the air electrode needs to be designed such that it minimizes the undesirable clogging and promotes the electrochemical reactivity. As the control of the morphology and porosity of the electrode greatly affects on the capacity and rate capability, various nanostructured air electrodes have been reported using carbon nanoparticles, graphene, graphene oxide, or carbon nanotubes (CNTs). However, the poor cyclability and low rate capability remain as critical drawbacks of the Li−O2 batteries, and the ideally designed electrode architecture is still awaited.


Advanced Materials | 2010

Elastomeric Conductive Composites Based on Carbon Nanotube Forests

Min Kyoon Shin; Jiyoung Oh; Marcio Dias Lima; Mikhail E. Kozlov; Seon Jeong Kim; Ray H. Baughman

Electrically conductive materials capable of substantial elastic stretch and bending are needed for such applications as smart clothing, flexible displays, stretchable circuits, strain gauges, implantable devices, high-stroke microelectromechanical systems, and dielectric elastomer actuators. A variety of approaches involving carbon nanotubes (CNTs) and elastic polymers have been suggested for the fabrication of conductive elastic composites. In particular, diverse active and passive electronic components have been embedded in rubber sheet by several research groups to obtain stretchable electronic devices. Sekitani et al. developed rubber-like conductive composites by mixing millimeter-long single-walled carbon nanotubes (SWNTs), an ionic liquid, and a fluorinated copolymer. The stretchability of the resulting composite was enhanced by creating perforated films with a net-shaped structure using a mechanical punching system. Cao et al. fabricated flexible electrodes by incorporating SWNTnetworks in plastics consisting of polyimide, polyurethane, and polyamic acid films. Although quite successful, these studies indicated that high loading of CNTs (or other conductive additive) was necessary to obtain a highly conducting composite. On the other hand, incorporation of high concentrations of CNTs into an elastic polymer increases the stiffness of the resulting composite and decreases its stretchability. In other words, the significant difference in the Young’s modulus of extremely rigid CNTs and the elastic polymer filler makes the creation of a highly stretchable conductive composites a challenging task. It is known that CNTs can be fabricated into macroscopic assemblies, such as mats (bucky paper), yarns, and fibers that possess useful electrical properties, and that these assemblies can be used for the fabrication of conductive polymer composites. While these assemblies are often more elastic than the individual CNTs, the achievable elastic strain range is still quite limited, normally less than 10%. We found that a combination of high stretchability and high electrical conductivity can be obtained for composites prepared from three-dimensional CNT structures, such as CNT forests (vertically aligned arrays of CNTs). Unlike previous methods involving casting CNT/ polymer dispersions as a film, our composites were prepared by the direct infiltration of multiwalled carbon nanotube (MWNT) forests with a polyurethane (PU) solution. Using this procedure, we obtained rubber-like forest/PU composites that combined high stretchability with high electrical conductivity. These composites provide highly reversible stress–strain behavior and little degradation of mechanical and electrical properties even when stretched over a wide strain range. The developed preparation procedure appears scalable for material fabrication on an industrial scale, though transition from present batchbased forest growth processes to continuous forest growth processes would be needed for applications that are price sensitive and depend on sheet weight, rather than the area of elastomeric sheet. The aligned arrays of MWNTs (MWNT forests) used in this study were grown on iron-catalyst-coated silicon wafers using a conventional chemical vapor deposition (CVD) method. Nanotubes in the forests typically had a diameter of about 10 nm; their length could be controlled across a wide range by changing the growth time and other fabrication conditions. The forest-covered area on the substrate used for the preparation of the composites typically had dimensions of about 50 100mm; the height of nanotubes in the forest was about 50mm as determined by the conventional optical microscopy. Since the nanotubes in the forests formed a three-dimensionally interconnected network, the forests were electrically conductive in all directions. The MWNT forests were infiltrated with a PU solution in N,N-dimethylformamide (DMF) using a simple drop-casting procedure, as shown in Figure 1a. The PU used was poly[4,40methylene-bis(phenyl isocyanate)-alt-1,4-butanediol/poly(butylene adipate)]. After evaporation of the solvent, we obtained about 250mm thick forest/PU composite sheets that could be peeled off the underlying Si wafer. Figure 1b shows a photograph of the MWNT/PU composite sheet taken at low magnification. One side of the prepared film facing the substrate (forest side) was black and conductive, and the other side (PU side) was white and insulating. The material was soft, flexible, and highly stretchable in the sheet plane. Figure 1c shows a SEM image of a cross-section of the composite sheet with the top ( 50mm in thickness) being the forest side and the bottom ( 200mm in thickness) being the PU side. A highmagnification image of the forest side is shown in the


Science | 2011

Biscrolling nanotube sheets and functional guests into yarns.

Marcio Dias Lima; Shaoli Fang; Xavier Lepró; Chihye Lewis; Raquel Ovalle-Robles; Javier Carretero-González; Elizabeth Castillo-Martinez; Mikhail E. Kozlov; Jiyoung Oh; Neema Rawat; Carter S. Haines; Mohammad H. Haque; Vaishnavi Aare; Stephanie Stoughton; Anvar A. Zakhidov; Ray H. Baughman

Carbon nanotube sheets can support very large fractions of a second material, such as a superconductor or a catalyst. Multifunctional applications of textiles have been limited by the inability to spin important materials into yarns. Generically applicable methods are demonstrated for producing weavable yarns comprising up to 95 weight percent of otherwise unspinnable particulate or nanofiber powders that remain highly functional. Scrolled 50-nanometer-thick carbon nanotube sheets confine these powders in the galleries of irregular scroll sacks whose observed complex structures are related to twist-dependent extension of Archimedean spirals, Fermat spirals, or spiral pairs into scrolls. The strength and electronic connectivity of a small weight fraction of scrolled carbon nanotube sheet enables yarn weaving, sewing, knotting, braiding, and charge collection. This technology is used to make yarns of superconductors, lithium-ion battery materials, graphene ribbons, catalytic nanofibers for fuel cells, and titanium dioxide for photocatalysis.


Advanced Materials | 2014

Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores

Changsoon Choi; Jae Ah Lee; A Young Choi; Youn Tae Kim; Xavier Lepró; Marcio Dias Lima; Ray H. Baughman; Seon Jeong Kim

Electrochemical deposition of MnO2 onto carbon nanotube (CNT) yarn gives a high-performance, flexible yarn supercapacitor. The hybrid yarns blended structure, resulting from trapping of MnO2 in its internal pores, effectively enlarges electrochemical area and reduces charge diffusion length. Accordingly, the yarn supercapacitor exhibits high values of capacitance, energy density, and average power density. Applications in wearable electronics can be envisaged.


Science | 2015

Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles

Zunfeng Liu; Shaoli Fang; F. A. Moura; Jianning Ding; Nan Jiang; Jiangtao Di; Mei Zhang; Xavier Lepró; Douglas S. Galvao; Carter S. Haines; Ninyi Yuan; Shougen Yin; D. W. Lee; Runwei Wang; Hongyan Wang; Wei Lv; C. Dong; R. C. Zhang; M. J. Chen; Qu Yin; Y. T. Chong; R. Zhang; Xuemin Wang; Marcio Dias Lima; Raquel Ovalle-Robles; Dong Qian; Hongbing Lu; Ray H. Baughman

Composite stretchable conducting wires Think how useful a stretchable electronic “skin” could be. For example you could place it over an aircraft fuselage or a body to create a network of sensors, processors, energy stores, or artificial muscles. But it is difficult to make electronic interconnects and strain sensors that can stretch over such surfaces. Liu et al. created superelastic conducting fibers by depositing carbon nanotube sheets onto a prestretched rubber core (see the Perspective by Ghosh). The nanotubes buckled on relaxation of the core, but continued to coat it fully and could stretch enormously, with relatively little change in resistance. Science, this issue p. 400; see also p. 382 Rubber fibers coated with sheets of carbon nanotubes form highly stretchable conducting wires. [Also see Perspective by Ghosh] Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson’s ratio on torsional actuation and electronic properties.


Nano Letters | 2010

Underwater Sound Generation Using Carbon Nanotube Projectors

Ali E. Aliev; Marcio Dias Lima; Shaoli Fang; Ray H. Baughman

The application of solid-state fabricated carbon nanotube sheets as thermoacoustic projectors is extended from air to underwater applications, thereby providing surprising results. While the acoustic generation efficiency of a liquid immersed nanotube sheet is profoundly degraded by nanotube wetting, the hydrophobicity of the nanotube sheets in water results in an air envelope about the nanotubes that increases pressure generation efficiency a hundred-fold over that obtained by immersion in wetting alcohols. Due to nonresonant sound generation, the emission spectrum of a liquid-immersed nanotube sheet varies smoothly over a wide frequency range, 1-10(5) Hz. The sound projection efficiency of nanotube sheets substantially exceeds that of much heavier and thicker ferroelectric acoustic projectors in the important region below about 4 kHz, and this performance advantage increases with decreasing frequency. While increasing thickness by stacking sheets eventually degrades performance due to decreased ability to rapidly transform thermal energy to acoustic pulses, use of tandem stacking of separated nanotube sheets (that are addressed with phase delay) eliminates this problem. Encapsulating the nanotube sheet projectors in argon provided attractive performance at needed low frequencies, as well as a realized energy conversion efficiency in air of 0.2%, which can be enhanced by increasing the modulation of temperature.

Collaboration


Dive into the Marcio Dias Lima's collaboration.

Top Co-Authors

Avatar

Ray H. Baughman

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Perez Bergmann

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Shaoli Fang

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Xavier Lepró

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Carter S. Haines

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Mikhail E. Kozlov

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyoung Oh

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Raquel Ovalle-Robles

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge