Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Márcio G. Pavan is active.

Publication


Featured researches published by Márcio G. Pavan.


Memorias Do Instituto Oswaldo Cruz | 2013

Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia

Fernando Abad-Franch; Márcio G. Pavan; Nicolás Jaramillo-O; Francisco S Palomeque; Carolina Dale; Duverney Chaverra; Fernando A. Monteiro

Rhodnius barretti , a new triatomine species, is described based on adult specimens collected in rainforest environments within the Napo ecoregion of western Amazonia (Colombia and Ecuador). R. barretti resembles Rhodnius robustus s.l. , but mitochondrial cytochrome b gene sequences reveal that it is a strongly divergent member of the “robustus lineage”, i.e., basal to the clade encompassing Rhodnius nasutus , Rhodnius neglectus , Rhodnius prolixus and five members of the R. robustus species complex. Morphometric analyses also reveal consistent divergence from R. robustus s.l. , including head and, as previously shown, wing shape and the length ratios of some anatomical structures. R. barretti occurs, often at high densities, in Attalea butyracea and Oenocarpus bataua palms. It is strikingly aggressive and adults may invade houses flying from peridomestic palms. R. barretti must therefore be regarded as a potential Trypanosoma cruzi vector in the Napo ecoregion, where Chagas disease is endemic.


Infection, Genetics and Evolution | 2013

A nuclear single-nucleotide polymorphism (SNP) potentially useful for the separation of Rhodnius prolixus from members of the Rhodnius robustus cryptic species complex (Hemiptera: Reduviidae)

Márcio G. Pavan; Rafael D. Mesquita; Gena G. Lawrence; Cristiano Lazoski; Ellen M. Dotson; Sahar Abubucker; Makedonka Mitreva; Jennifer Randall-Maher; Fernando A. Monteiro

The design and application of rational strategies that rely on accurate species identification are pivotal for effective vector control. When morphological identification of the target vector species is impractical, the use of molecular markers is required. Here we describe a non-coding, single-copy nuclear DNA fragment that contains a single-nucleotide polymorphism (SNP) with the potential to distinguish the important domestic Chagas disease vector, Rhodnius prolixus, from members of the four sylvatic Rhodnius robustus cryptic species complex. A total of 96 primer pairs obtained from whole genome shotgun sequencing of the R. prolixus genome (12,626 random reads) were tested on 43 R. prolixus and R. robustus s.l. samples. One of the seven amplicons selected (AmpG) presented a SNP, potentially diagnostic for R. prolixus, on the 280th site. The diagnostic nature of this SNP was then confirmed based on the analysis of 154 R. prolixus and R. robustus s.l. samples representing the widest possible geographic coverage. The results of a 60% majority-rule Bayesian consensus tree and a median-joining network constructed based on the genetic variability observed reveal the paraphyletic nature of the R. robustus species complex, with respect to R. prolixus. The AmpG region is located in the fourth intron of the Transmembrane protein 165 gene, which seems to be in the R. prolixus X chromosome. Other possible chromosomal locations of the AmpG region in the R. prolixus genome are also presented and discussed.


PLOS ONE | 2016

Spatial and Molecular Epidemiology of Giardia intestinalis Deep in the Amazon, Brazil.

Beatriz Coronato Nunes; Márcio G. Pavan; Lauren Hubert Jaeger; Kerla Joeline Lima Monteiro; Samanta Cristina das Chagas Xavier; Fernando A. Monteiro; Márcio Neves Bóia; Filipe Anibal Carvalho-Costa

Background Current control policies for intestinal parasitosis focuses on soil-transmitted helminths, being ineffective against Giardia intestinalis, a highly prevalent protozoon that impacts children’s nutritional status in developing countries. The objective of this study was to explore spatial and molecular epidemiology of Giardia intestinalis in children of Amerindian descent in the Brazilian Amazon. Methodology/Principal Findings A cross sectional survey was performed in the Brazilian Amazon with 433 children aged 1 to 14 years. Fecal samples were processed through parasitological techniques and molecular characterization. Prevalence of G. intestinalis infection was 16.9% (73/433), reaching 22.2% (35/158) among children aged 2–5 years, and a wide distribution throughout the city with some hot spots. Positivity-rate was similar among children living in distinct socioeconomic strata (48/280 [17.1%] and 19/116 [16.4%] below and above the poverty line, respectively). Sequencing of the β-giardin gene revealed 52.2% (n = 12) of assemblage A and 47.8% (n = 11) of assemblage B with high haplotype diversity for the latter. The isolates clustered into two well-supported G. intestinalis clades. A total of 38 haplotypes were obtained, with the following subassemblages distribution: 5.3% (n = 2) AII, 26.3% (n = 10) AIII, 7.9% (n = 3) BIII, and 60.5% (n = 23) new B genotypes not previously described. Conclusions/Significance Giardia intestinalis infection presents a high prevalence rate among Amerindian descended children living in Santa Isabel do Rio Negro/Amazon. The wide distribution observed in a small city suggests the presence of multiple sources of infection, which could be related to environmental contamination with feces, possibly of human and animal origin, highlighting the need of improving sanitation, safe water supply and access to diagnosis and adequate treatment of infections.


Parasites & Vectors | 2015

Clocks do not tick in unison: isolation of Clock and vrille shed new light on the clockwork model of the sand fly Lutzomyia longipalpis

João Silveira Moledo Gesto; Gustavo B. S. Rivas; Márcio G. Pavan; Antonio Meireles-Filho; Paulo Roberto de Amoretty; Nataly Araujo de Souza; Rafaela Vieira Bruno; Alexandre Afranio Peixoto

BackgroundBehavior rhythms of insect vectors directly interfere with the dynamics of pathogen transmission to humans. The sand fly Lutzomyia longipalpis is the main vector of visceral leishmaniasis in America and concentrates its activity around dusk. Despite the accumulation of behavioral data, very little is known about the molecular bases of the clock mechanism in this species. This study aims to characterize, within an evolutionary perspective, two important circadian clock genes, Clock and vrille.FindingsWe have cloned and isolated the coding sequence of L. longipalpis’ genes Clock and vrille. The former is structured in eight exons and encodes a protein of 696 amino acids, and the latter comprises three exons and translates to a protein of 469 amino acids. When compared to other insects’ orthologues, L. longipalpis CLOCK shows a high degree of conservation in the functional domains bHLH and PAS, but a much shorter glutamine-rich (poly-Q) C-terminal region. As for L. longipalpis VRILLE, a high degree of conservation was found in the bZIP domain. To support these observations and provide an elegant view of the evolution of both genes in insects, phylogenetic analyses based on maximum-likelihood and Bayesian inferences were performed, corroborating the previously known insect systematics.ConclusionsThe isolation and phylogenetic analyses of Clock and vrille orthologues in L. longipalpis bring novel and important data to characterize this species’ circadian clock. Interestingly, the poly-Q shortening observed in CLOCK suggests that its transcription activity might be impaired and we speculate if this effect could be compensated by other clock factors such as CYCLE.


Archive | 2015

Looks Can be Deceiving: Cryptic Species and Phenotypic Variation in Rhodnius spp., Chagas Disease Vectors

Márcio G. Pavan; Gustavo B. S. Rivas; Fernando B. S. Dias; Rodrigo Gurgel-Gonçalves

The aim of this chapter was to highlight the importance of applying morphological, ecological, behavioral, and molecular methods to analyze taxonomic problems among Chagas disease vector species. We structured the chapter as follows: an introductory section about the disease and the reason why studies on cryptic species , phenotypic variation, and ecological niches in Rhodnius spp. are relevant for the interruption of disease transmission and two sections containing general aspects of Chagas disease in three Latin American biomes (Amazon , Cerrado , and Caatinga ), and taxonomic problem-solving examples. Finally, we present a section containing future trends in molecular systematics and behavior studies that might be useful for developing new vector control and surveillance strategies. Although this chapter is focused on insect vector species, any reader interested in ecology and molecular systematics will find valuable guidance on how to design a study that aims to answer taxonomic questions involving closely related species.


Journal of Biological Rhythms | 2018

Effects of Light and Temperature on Daily Activity and Clock Gene Expression in Two Mosquito Disease Vectors

Gustavo Bueno da Silva Rivas; Rayane Teles de Freitas; Márcio G. Pavan; José Bento Pereira Lima; Alexandre A. Peixoto; Rafaela Vieira Bruno

Most organisms feature an endogenous circadian clock capable of synchronization with their environment. The most well-known synchronizing agents are light and temperature. The circadian clock of mosquitoes, vectors of many pathogens, drives important behaviors related to vectoral capacity, including oviposition, host seeking, and hematophagy. Main clock gene expression, as well as locomotor activity patterns, has been identified in Aedes aegypti and Culex quinquefasciatus under artificial light-dark cycles. Given that these mosquito species thrive in tropical areas, it is reasonable to speculate that temperature plays an important role in the circadian clock. Here, we provide data supporting a different hierarchy of light and temperature as zeitgebers of two mosquito species. We recorded their locomotor activity and quantified mRNA expression of the main clock genes in several combinations of light and temperature cycles. We observed that A. aegypti is more sensitive to temperature, while C. quinquefasciatus is more responsive to light. These variations in clock gene expression and locomotor activity may have affected the mosquito species’ metabolism, energy expenditure, fitness cost, and pathogen transmission efficiency. Our findings are relevant to chronobiology studies and also have epidemiological implications.


PLOS Neglected Tropical Diseases | 2018

Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers

Fabiola Roman; Samanta das Chagas Xavier; Louisa A. Messenger; Márcio G. Pavan; Michael A. Miles; Ana Maria Jansen; Matthew Yeo

Background Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. Methodology/Principal findings In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. Conclusions/Significance The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species.


PLOS Neglected Tropical Diseases | 2018

Phylogeography and demographic history of the Chagas disease vector Rhodnius nasutus (Hemiptera: Reduviidae) in the Brazilian Caatinga biome

Tatiana Peretolchina; Márcio G. Pavan; Jessica Corrêa-Antônio; Rodrigo Gurgel-Gonçalves; Marli Maria Lima; Fernando A. Monteiro

Background Rhodnius nasutus, a vector of the etiological agent Trypanosoma cruzi, is one of the epidemiologically most relevant triatomine species of the Brazilian Caatinga, where it often colonizes rural peridomestic structures such as chicken coops and occasionally invades houses. Historical colonization and determination of its genetic diversity and population structure may provide new information towards the improvement of vector control in the region. In this paper we present thoughtful analyses considering the phylogeography and demographic history of R. nasutus in the Caatinga. Methodology/Principal findings A total of 157 R. nasutus specimens were collected from Copernicia prunifera palm trees in eight geographic localities within the Brazilian Caatinga biome, sequenced for 595-bp fragment of the mitochondrial cytochrome b gene (cyt b) and genotyped for eight microsatellite loci. Sixteen haplotypes were detected in the cyt b sequences, two of which were shared among different localities. Molecular diversity indices exhibited low diversity levels and a haplotype network revealed low divergence among R. nasutus sequences, with two central haplotypes shared by five of the eight populations analyzed. The demographic model that better represented R. nasutus population dynamics was the exponential growth model. Results of the microsatellite data analyses indicated that the entire population is comprised of four highly differentiated groups, with no obvious contemporary geographic barriers that could explain the population substructure detected. A complex pattern of migration was observed, in which a western Caatinga population seems to be the source of emigrants to the eastern populations. Conclusions/Significance R. nasutus that inhabit C. prunifera palms do not comprise a species complex. The species went through a population expansion at 12–10 ka, during the Holocene, which coincides with end of the largest dry season in South America. It colonized the Caatinga in a process that occurred from west to east in the region. R. nasutus is presently facing an important ecological impact caused by the continuous deforestation of C. prunifera palms in northeast Brazil. We hypothesize that this ecological disturbance might contribute to an increase in the events of invasion and colonization of human habitations.


Memorias Do Instituto Oswaldo Cruz | 2018

Trypanosoma janseni n. sp. (Trypanosomatida: Trypanosomatidae) isolated from Didelphis aurita (Mammalia: Didelphidae) in the Atlantic Rainforest of Rio de Janeiro, Brazil: integrative taxonomy and phylogeography within the Trypanosoma cruzi clade

Camila Madeira Tavares Lopes; Rubem F. S. Menna-Barreto; Márcio G. Pavan; Mirian Claudia de Souza Pereira; André Luiz Rodrigues Roque

BACKGROUND Didelphis spp. are a South American marsupial species that are among the most ancient hosts for the Trypanosoma spp. OBJECTIVES We characterise a new species (Trypanosoma janseni n. sp.) isolated from the spleen and liver tissues of Didelphis aurita in the Atlantic Rainforest of Rio de Janeiro, Brazil. METHODS The parasites were isolated and a growth curve was performed in NNN and Schneiders media containing 10% foetal bovine serum. Parasite morphology was evaluated via light microscopy on Giemsa-stained culture smears, as well as scanning and transmission electron microscopy. Molecular taxonomy was based on a partial region (737-bp) of the small subunit (18S) ribosomal RNA gene and 708 bp of the nuclear marker, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes. Maximum likelihood and Bayesian inference methods were used to perform a species coalescent analysis and to generate individual and concatenated gene trees. Divergence times among species that belong to the T. cruzi clade were also inferred. FINDINGS In vitro growth curves demonstrated a very short log phase, achieving a maximum growth rate at day 3 followed by a sharp decline. Only epimastigote forms were observed under light and scanning microscopy. Transmission electron microscopy analysis showed structures typical to Trypanosoma spp., except one structure that presented as single-membraned, usually grouped in stacks of three or four. Phylogeography analyses confirmed the distinct species status of T. janseni n. sp. within the T. cruzi clade. Trypanosoma janseni n. sp. clusters with T. wauwau in a well-supported clade, which is exclusive and monophyletic. The separation of the South American T. wauwau + T. janseni coincides with the separation of the Southern Super Continent. CONCLUSIONS This clade is a sister group of the trypanosomes found in Australian marsupials and its discovery sheds light on the initial diversification process based on what we currently know about the T. cruzi clade.


Infection, Genetics and Evolution | 2018

Genetic diversity of Giardia duodenalis circulating in three Brazilian biomes

Beatriz Coronato Nunes; Deiviane Aparecida Calegar; Márcio G. Pavan; Lauren Hubert Jaeger; Kerla Joeline Lima Monteiro; Elis Regina Chaves dos Reis; Marli Maria Lima; Márcio Neves Bóia; Filipe Anibal Carvalho-Costa

Giardia duodenalis has a wide genetic variety, and its characterization helps in the understanding of its transmission dynamics and in the development control strategies. This study aimed to assess the genetic diversity of G. duodenalis obtained in different Brazilian biomes and estimate their phylogenetic relationships. Three surveys including 944 participants were carried out in the municipalities of Russas (RSS, Caatinga semiarid biome), Santa Isabel do Rio Negro (SIRN, Amazon rainforest biome) and Nossa Senhora de Nazaré (NSN, Cerrado-Caatinga transition biome). G. duodenalis-positive fecal samples were submitted to amplification of gene fragments encoding β-giardin (βG, N = 71), glutamate dehydrogenase (GDH, N = 42), and triosephosphate isomerase (TPI, N = 27). Overall detection rates of assemblage A in G. duodenalis-positive samples through βG, GDH and TPI were 22/71 (31%), 13/42 (31%), and 13/27 (48.1%), respectively. Concerning assemblage B, rates with distinct genetic markers were 49/71 (69%), 29/42 (69%), and 14/27 (51.9%), respectively. In the Amazon, assemblage B was more prevalent (77.8%, 71.8% and 65% through βG, GDH and TPI, respectively), while in the Cerrado biome assemblage A predominated (50%, 66.6%, and 85.7%, through βG, GDH and TPI, respectively). In Caatinga biome assemblage A also predominated (71.4%, through βG). Thirty new sub-assemblages are described for assemblage B (24 βG and six TPI), as well as three new sub-assemblages are described for assemblage A (one GDH and 2 TPI). Higher genetic diversity of assemblage B in the Amazon may be related to demographic concentration leading to a more complex transmission network within a poorer sanitation background. The high genetic divergence between assemblages A and B (5.5-6.3%) support the proposal of taxon separation in distinct species.

Collaboration


Dive into the Márcio G. Pavan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafaela Vieira Bruno

National Council for Scientific and Technological Development

View shared research outputs
Top Co-Authors

Avatar

Alexandre A. Peixoto

National Council for Scientific and Technological Development

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge