Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcio O. Lasaro is active.

Publication


Featured researches published by Marcio O. Lasaro.


Molecular Therapy | 2009

New Insights on Adenovirus as Vaccine Vectors

Marcio O. Lasaro; Hildegund C.J. Ertl

Adenovirus (Ad) vectors were initially developed for treatment of genetic diseases. Their usefulness for permanent gene replacement was limited by their high immunogenicity, which resulted in rapid elimination of transduced cells through induction of T and B cells to antigens of Ad and the transgene product. The very trait that excluded their use for sustained treatment of genetic diseases made them highly attractive as vaccine carriers. Recently though results showed that Ad vectors based on common human serotypes, such as serotype 5, may not be ideal as vaccine carriers. A recently conducted phase 2b trial, termed STEP trial, with an AdHu5-based vaccine expressing antigens of human immunodeficiency virus 1 (HIV-1) not only showed lack of efficacy in spite of the vaccines immunogenicity, but also suggested an increased trend for HIV acquisition in individuals that had circulating AdHu5 neutralizing antibodies prior to vaccination. Alternative serotypes from humans or nonhuman primates (NHPs), to which most humans lack pre-existing immunity, have been vectored and may circumvent the problems encountered with the use of AdHu5 vectors in humans. In summary, although Ad vectors have seen their share of setbacks in recent years, they remain viable tools for prevention or treatment of a multitude of diseases.


Journal of Experimental Medicine | 2006

Random migration precedes stable target cell interactions of tumor-infiltrating T cells

Paulus Mrass; Hajime Takano; Lai Guan Ng; Sachin Daxini; Marcio O. Lasaro; Amaya Iparraguirre; Lois L. Cavanagh; Ulrich H. von Andrian; Hildegund C.J. Ertl; Philip G. Haydon; Wolfgang Weninger

The tumor microenvironment is composed of an intricate mixture of tumor and host-derived cells that engage in a continuous interplay. T cells are particularly important in this context as they may recognize tumor-associated antigens and induce tumor regression. However, the precise identity of cells targeted by tumor-infiltrating T lymphocytes (TILs) as well as the kinetics and anatomy of TIL-target cell interactions within tumors are incompletely understood. Furthermore, the spatiotemporal conditions of TIL locomotion through the tumor stroma, as a prerequisite for establishing contact with target cells, have not been analyzed. These shortcomings limit the rational design of immunotherapeutic strategies that aim to overcome tumor-immune evasion. We have used two-photon microscopy to determine, in a dynamic manner, the requirements leading to tumor regression by TILs. Key observations were that TILs migrated randomly throughout the tumor microenvironment and that, in the absence of cognate antigen, they were incapable of sustaining active migration. Furthermore, TILs in regressing tumors formed long-lasting (≥30 min), cognate antigen–dependent contacts with tumor cells. Finally, TILs physically interacted with macrophages, suggesting tumor antigen cross-presentation by these cells. Our results demonstrate that recognition of cognate antigen within tumors is a critical determinant of optimal TIL migration and target cell interactions, and argue against TIL guidance by long-range chemokine gradients.


Journal of Virology | 2007

Effect of Preexisting Immunity to Adenovirus Human Serotype 5 Antigens on the Immune Responses of Nonhuman Primates to Vaccine Regimens Based on Human- or Chimpanzee-Derived Adenovirus Vectors

Kimberly McCoy; Birgit Korioth-Schmitz; Marcio O. Lasaro; Scott E. Hensley; Shih-Wen Lin; Yan Li; Wynetta Giles-Davis; Ann Cun; Dongming Zhou; Zhiquan Xiang; Norman L. Letvin; Hildegund C.J. Ertl

ABSTRACT In this study we compared a prime-boost regimen with two serologically distinct replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes C68 and C1 expressing Gag, Pol, gp140, and Nef of human immunodeficiency virus type 1 with a regimen in which replication-defective Ad vectors of the human serotype 5 (AdHu5) were given twice. Experiments were conducted in rhesus macaques that had or had not been preexposed to antigens of AdHu5. There was no significant difference in T-cell responses tested from peripheral blood of the different groups, although responses were overall highest in nonpreexposed animals immunized with the chimpanzee Ad vectors. Preexisting immunity to AdHu5 completely inhibited induction of transgene product-specific antibodies by the AdHu5 vectors without affecting antibody responses to the chimpanzee vectors. Upon euthanasia, T-cell responses were tested from a number of tissues. Preexisting immunity to AdHu5, commonly found in humans, changed the homing pattern of vaccine-induced T cells. In AdHu5-preexposed animals vaccinated with the chimpanzee Ad vectors, frequencies of transgene-specific T cells were higher in spleens than in blood, and in most preexposed animals vaccinated either with AdHu5 vectors or chimpanzee adenovirus vectors, frequencies of such T cells were exceptionally high in livers. The latter results indicate that analysis of T-cell responses solely from blood mononuclear cells of vaccine recipients may not suffice to compare the potencies of different vaccine regimens.


Journal of Clinical Investigation | 2007

Recombinant adeno-associated virus vectors induce functionally impaired transgene product–specific CD8+ T cells in mice

Shih-Wen Lin; Scott E. Hensley; Marcio O. Lasaro; Hildegund C.J. Ertl

Recombinant adeno-associated virus (rAAV) vectors were used in human trials as carriers of vaccines for HIV-1 after encouraging preclinical results. However, the clinical trials yielded disappointing results. Here we demonstrated that in mice, rAAV vectors expressing the gene encoding HIV-1 gag stimulated gag-specific CD8(+) T cells, but these T cells failed to expand after a booster immunization with a replication-defective adenoviral (Ad) vector also expressing gag. We tested rAAV vectors of different serotypes expressing HIV-1 gag for induction of transgene product-specific CD8(+) T cells and found that the immunoinhibitory effect of rAAV priming observed with different AAV serotypes was transgene product specific, was independent of the interval between prime and boost, and extended to boosts with vaccine modalities other than Ad vectors. rAAV vector-induced CD8(+) T cells proliferated poorly, produced low levels of IFN-gamma in response to gag stimulation, and upregulated immunoinhibitory molecules. These T cells did not protect efficiently against challenge with a surrogate pathogen. Finally, we showed that the impaired proliferative capacity of the T cells was caused by persistence of the antigen-encoding rAAV vectors and could be reversed by placing the CD8(+) T cells in an antigen-free environment. Our data suggest that rAAV vectors induce functionally impaired T cells and could dampen the immune response to a natural infection.


Nature Medicine | 2008

Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses

Marcio O. Lasaro; Scott E. Hensley; J. Charles Whitbeck; Shih-Wen Lin; John J. Rux; E. John Wherry; Gary H. Cohen; Roselyn J. Eisenberg; Hildegund C.J. Ertl

Interactions between the herpesvirus entry mediator (HVEM) and the B- and T-lymphocyte attenuator (BTLA) inhibit B and T cell activation. HVEM-BTLA interactions are blocked by herpes simplex virus (HSV) glycoprotein D (gD) through binding of its N-terminal domain to the BTLA binding site of HVEM. In this study, we inserted viral antigens into the C-terminal domain of gD and expressed these antigens with plasmid or E1-deleted (replication-defective) adenovirus vectors. Viral antigens fused to gD induced T and B cell responses to the antigen that were far more potent than those elicited by the same antigen expressed without gD. The immunopotentiating effect required binding of the gD chimeric protein to HVEM. Overall, the studies demonstrate that targeting of antigen to the BTLA binding site of HVEM augments the immunogenicity of vaccines.


Journal of Virology | 2009

Effect of Preexisting Immunity on an Adenovirus Vaccine Vector: In Vitro Neutralization Assays Fail To Predict Inhibition by Antiviral Antibody In Vivo

Susan L. Pichla-Gollon; Shih-Wen Lin; Scott E. Hensley; Marcio O. Lasaro; Larissa Herkenhoff-Haut; Mark Drinker; Guangping Gao; James M. Wilson; Hildegund C.J. Ertl; Jeffrey M. Bergelson

ABSTRACT A major obstacle to the use of adenovirus vectors derived from common human serotypes, such as human adenovirus 5 (AdHu5), is the high prevalence of virus-neutralizing antibodies in the human population. We previously constructed a variant of chimpanzee adenovirus 68 (AdC68) that maintained the fundamental properties of the carrier but was serologically distinct from AdC68 and resisted neutralization by AdC68 antibodies. In the present study, we tested whether this modified vector, termed AdCDQ, could induce transgene product-specific CD8+ T cells in mice with preexisting neutralizing antibody to wild-type AdC68. Contrary to our expectation, the data show conclusively that antibodies that fail to neutralize the AdCDQ mutant vector in vitro nevertheless impair the vectors capacity to transduce cells and to stimulate a transgene product-specific CD8+ T-cell response in vivo. The results thus suggest that in vitro neutralization assays may not reliably predict the effects of virus-specific antibodies on adenovirus vectors in vivo.


Journal of Immunology | 2009

Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens

Nia Tatsis; Marcio O. Lasaro; Shih-Wen Lin; Zhi Q. Xiang; Dongming Zhou; Lauren J. DiMenna; Hua Li; Ang Bian; Sarah Abdulla; Yan Li; Wynetta Giles-Davis; Jessica C. Engram; Sarah J. Ratcliffe; Guido Silvestri; Hildegund C.J. Ertl; Michael R. Betts

In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with preexisting neutralizing Abs against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine’s efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here, we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee-derived Ad vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the chimpanzee-derived Ad vectors induced higher T and B cell responses than did repeated immunizations with the AdHu5 vector, especially in AdHu5-preexposed macaques.


Molecular Therapy | 2011

Capsid-specific T-cell Responses to Natural Infections With Adeno-associated Viruses in Humans Differ From Those of Nonhuman Primates

Hua Li; Marcio O. Lasaro; Bei Jia; Shih Wen Lin; Larissa H. Haut; Katherine A. High; Hildegund C.J. Ertl

Hepatic adeno-associated virus serotype 2 (AAV2)-mediated gene transfer failed to achieve sustained transgene product expression in human subjects. We formulated the hypothesis that rejection of AAV-transduced hepatocytes is caused by AAV capsid-specific CD8(+) T cells that become reactivated upon gene transfer. Although this hypothesis was compatible with clinical data, which showed a rise in circulating AAV capsid-specific T cells following injection of AAV vectors, it did not explain that AAV vectors achieved long-term transgene expression in rhesus macaques, which are naturally infected with AAV serotypes closely related to those of humans. To address this apparent contradiction, we tested human and rhesus macaque samples for AAV capsid-specific T cells by intracellular cytokine staining combined with staining for T-cell subset and differentiation markers. This highly sensitive method, which could provide a tool to monitor adverse T-cell responses in gene transfer trials, showed that AAV capsid-specific CD8(+) and CD4(+) T cells can be detected in blood of naturally infected humans and rhesus macaques. They are present at higher frequencies in rhesus macaques. Furthermore, T cells from humans and rhesus macaques exhibit striking differences in their differentiation status and in their functions, which may explain the disparate duration of AAV-mediated gene transfer in these two species.


Clinical and Vaccine Immunology | 2010

Immune Responses and Therapeutic Antitumor Effects of an Experimental DNA Vaccine Encoding Human Papillomavirus Type 16 Oncoproteins Genetically Fused to Herpesvirus Glycoprotein D

Mariana O. Diniz; Marcio O. Lasaro; Hildegund C.J. Ertl; Luís Carlos de Souza Ferreira

ABSTRACT Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8+ T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8+ T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4+ T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8+ T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8+ T-cell responses, measured by intracellular gamma interferon (IFN-γ) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2Db-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 × 105 TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.


Molecular Therapy | 2011

Active Immunotherapy Combined With Blockade of a Coinhibitory Pathway Achieves Regression of Large Tumor Masses in Cancer-prone Mice

Marcio O. Lasaro; Marina Sazanovich; Wynetta Giles-Davis; Paulus Mrass; Ralph M. Bunte; Duane A. Sewell; S. Farzana Hussain; Yang-Xin Fu; Wolfgang Weninger; Yvonne Paterson; Hildegund C.J. Ertl

Vaccines that aim to expand tumor-specific CD8(+) T cells have yielded disappointing results in cancer patients although they showed efficacy in transplantable tumor mouse models. Using a system that more faithfully mimics a progressing cancer and its immunoinhibitory microenvironment, we here show that in transgenic mice, which gradually develop adenocarcinomas due to expression of HPV-16 E7 within their thyroid, a highly immunogenic vaccine expressing E7 only induces low E7-specific CD8(+) T-cell responses, which fail to affect the size of the tumors. In contrast, the same type of vaccine expressing E7 fused to herpes simplex virus (HSV)-1 glycoprotein D (gD), an antagonist of the coinhibitory B- and T-lymphocyte attenuator (BTLA)/CD160-herpes virus entry mediator (HVEM) pathways, stimulates potent E7-specific CD8(+) T-cell responses, which can be augmented by repeated vaccination, resulting in initial regression of even large tumor masses in all mice with sustained regression in more than half of them. These results indicate that active immunization concomitantly with blockade of the immunoinhibitory HVEM-BTLA/CD160 pathways through HSV-1 gD may result in sustained tumor regression.

Collaboration


Dive into the Marcio O. Lasaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Hensley

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongming Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge