Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco A. Marra is active.

Publication


Featured researches published by Marco A. Marra.


Physiological Reports | 2016

A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements

Jos Oudeman; Valentina Mazzoli; Marco A. Marra; Klaas Nicolay; Mario Maas; Nico Verdonschot; André Sprengers; Aart J. Nederveen; Gustav J. Strijkers; Martijn Froeling

Musculoskeletal (dys‐)function relies for a large part on muscle architecture which can be obtained using Diffusion‐Tensor MRI (DT‐MRI) and fiber tractography. However, reconstructed tracts often continue along the tendon or aponeurosis when using conventional methods, thus overestimating fascicle lengths. In this study, we propose a new method for semiautomatic segmentation of tendinous tissue using tract density (TD). We investigated the feasibility and repeatability of this method to quantify the mean fascicle length per muscle. Additionally, we examined whether the method facilitates measuring changes in fascicle length of lower leg muscles with different foot positions. Five healthy subjects underwent two DT‐MRI scans of the right lower leg, with the foot in 15° dorsiflexion, neutral, and 30° plantarflexion positions. Repeatability of fascicle length measurements was assessed using Bland–Altman analysis. Changes in fascicle lengths between the foot positions were tested using a repeated multivariate analysis of variance (MANOVA). Bland–Altman analysis showed good agreement between repeated measurements. The coefficients of variation in neutral position were 8.3, 16.7, 11.2, and 10.4% for soleus (SOL), fibularis longus (FL), extensor digitorum longus (EDL), and tibialis anterior (TA), respectively. The plantarflexors (SOL and FL) showed significant increase in fascicle length from plantarflexion to dorsiflexion, whereas the dorsiflexors (EDL and TA) exhibited a significant decrease. The use of a tract density for semiautomatic segmentation of tendinous structures provides more accurate estimates of the mean fascicle length than traditional fiber tractography methods. The method shows moderate to good repeatability and allows for quantification of changes in fascicle lengths due to passive stretch.


Knee Surgery, Sports Traumatology, Arthroscopy | 2018

Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study

Marco A. Marra; Marta Strzelczak; Petra J. C. Heesterbeek; Sebastiaan van de Groes; Dennis Janssen; Bart F.J.M. Koopman; Ate B. Wymenga; Nico Verdonschot

AbstractPurposeIn total knee arthroplasty (TKA), the posterior tibial slope is not always reconstructed correctly, and the knee ligaments may become too tight in flexion. To release a tight flexion gap, surgeons can increase the posterior tibial slope using two surgical resection techniques: the anterior tibial cortex (ACR) or the centre of tibial plateau (CPR) referencing. It is not known how this choice affects the knee laxity and function during activities of daily living. The aim of this study was to investigate the effect of tibial slope on knee laxity, kinematics and forces during a squatting activity using computer simulation techniques. We hypothesised that the effects depend on the referencing technique utilised. MethodsA validated musculoskeletal model of TKA was used. Knee laxity tests were simulated in flexion and extension. Then, a squat motion was simulated to calculate: movement of the tibiofemoral joint (TFJ) contact points and patello-femoral joint (PFJ) contact force. All analyses were repeated with more anterior (−3°), neutral (0°), and more posterior tibial slope (+3°, +6°, +9°), and with two referencing techniques (ACR, CPR).ResultsKnee laxities increased dramatically with more posterior slope with the ACR technique (up to 400%), both in flexion and in extension. The CPR technique, instead, had much smaller effects (up to 42% variations). During squatting, more slope with the ACR technique resulted in larger movements of the TFJ contact point. The PFJ contact force decreased considerably with more slope with the CPR technique (12% body weight reduction every 3° more posterior slope), thanks to the preservation of the patellar height and quadriceps–femur load sharing.ConclusionACR technique alters considerably the knee laxity, both in flexion and extensions, and surgeons should be cautious about its use. More slope with CPR technique induces more favourable TFJ kinematics and loading of the knee extensor apparatus and does not substantially alter knee laxity. Preferably, the tibial slope resection should be pre-planned thoroughly and performed using CPR technique as accurately as possible. Surgeons can directly translate the results of this study into the clinical practice.


Journal of Biomechanical Engineering-transactions of The Asme | 2017

Evaluation of a Surrogate Contact Model in Force-Dependent Kinematic Simulations of Total Knee Replacement

Marco A. Marra; Michael Skipper Andersen; Michael Damsgaard; Bart F.J.M. Koopman; Dennis Janssen; Nico Verdonschot

Knowing the forces in the human body is of great clinical interest and musculoskeletal (MS) models are the most commonly used tool to estimate them in vivo. Unfortunately, the process of computing muscle, joint contact, and ligament forces simultaneously is computationally highly demanding. The goal of this study was to develop a fast surrogate model of the tibiofemoral (TF) contact in a total knee replacement (TKR) model and apply it to force-dependent kinematic (FDK) simulations of activities of daily living (ADLs). Multiple domains were populated with sample points from the reference TKR contact model, based on reference simulations and design-of-experiments. Artificial neural networks (ANN) learned the relationship between TF pose and loads from the medial and lateral sides of the TKR implant. Normal and right-turn gait, rising-from-a-chair, and a squat were simulated using both surrogate and reference contact models. Compared to the reference contact model, the surrogate contact model predicted TF forces with a root-mean-square error (RMSE) lower than 10 N and TF moments lower than 0.3 N·m over all simulated activities. Secondary knee kinematics were predicted with RMSE lower than 0.2 mm and 0.2 deg. Simulations that used the surrogate contact model ran on average three times faster than those using the reference model, allowing the simulation of a full gait cycle in 4.5 min. This modeling approach proved fast and accurate enough to perform extensive parametric analyses, such as simulating subject-specific variations and surgical-related factors in TKR.


Physiotherapy Theory and Practice | 2018

Magnetic-resonance-imaging-based three-dimensional muscle reconstruction of hip abductor muscle volume in a person with a transfemoral bone-anchored prosthesis: A feasibility study

Ruud A. Leijendekkers; Marco A. Marra; Marieke J.M. Ploegmakers; Gerben van Hinte; J.P.M. Frolke; Hendrik Van De Meent; J. Bart Staal; Thomas J. Hoogeboom; Nico Verdonschot

ABSTRACT Background: Persons with transfemoral amputation typically have severe muscle atrophy of the residual limb. The effect of bone-anchored prosthesis use on existing muscle atrophy is unknown. A potentially feasible method to evaluate this is magnetic resonance imaging (MRI)-based three-dimensional (3D) muscle reconstruction. We aimed to (1) examine the feasibility of MRI-based 3D muscle reconstruction technique in a person with a cobalt–chrome–molybdenum transfemoral bone-anchored prosthesis; and (2) describe the change of hip abductor muscle volume over time. Methods: In this single case, 1-year follow-up study we reconstructed the 3D hip abductor muscle volumes semiautomatically from MRI scans at baseline, 6- and 12-month follow-up. The number of adverse events, difficulties in data analysis, time investment and participants’ burden determined the level of feasibility. Results: We included a man (70 years) with a transfemoral amputation who received a bone-anchored prosthesis after 52 years of socket prosthesis use. No adverse events occurred. The accuracy of the 3D reconstruction was potentially reduced by severe adipose tissue interposition. Data analysis was time-intensive (115 h). Participants’ burden was limited to 3-h time investment. Compared to baseline, the total hip abductor volume of both the residual limb (6 month: 5.5%; 12 month: 7.4%) and sound limb (6 month: 7.8%; 12 month: 5.5%) increased. Conclusion: The presented technique appears feasible to follow muscle volume changes over time in a person with a cobalt–chrome–molybdenum transfemoral bone-anchored prosthesis in an experimental setting. Future research should focus on analysis of muscle tissue composition and the feasibility in bone-anchored prostheses of other alloys.


PLOS ONE | 2018

Gait symmetry and hip strength in women with developmental dysplasia following hip arthroplasty compared to healthy subjects: A cross-sectional study

Ruud A. Leijendekkers; Marco A. Marra; Sjoerd Kolk; Geert van Bon; B Wim Schreurs; Vivian Weerdesteyn; Nico Verdonschot

Introduction Untreated unilateral developmental dysplasia of the hip (DDH) results in asymmetry of gait and hip strength and may lead to early osteoarthritis, which is commonly treated with a total hip arthroplasty (THA). There is limited knowledge about the obtained symmetry of gait and hip strength after the THA. The objectives of this cross-sectional study were to: a) identify asymmetries between the operated and non-operated side in kinematics, kinetics and hip strength, b) analyze if increased walking speed changed the level of asymmetry in patients c) compare these results with those of healthy subjects. Methods Women (18–70 year) with unilateral DDH who had undergone unilateral THA were eligible for inclusion. Vicon gait analysis system was used to collect frontal and sagittal plane kinematic and kinetic parameters of the hip joint, pelvis and trunk during walking at comfortable walking speed and increased walking speed. Furthermore, hip abductor and extensor muscle strength was measured. Results Six patients and eight healthy subjects were included. In the patients, modest asymmetries in lower limb kinematics and kinetics were present during gait, but trunk lateral flexion asymmetry was evident. Patients’ trunk lateral flexion also differed compared to healthy subjects. Walking speed did not significantly influence the level of asymmetry. The hip abduction strength asymmetry of 23% was not statistically significant, but the muscle strength of both sides were significantly weaker than those of healthy subjects. Conclusions In patients with a DDH treated with an IBG THA modest asymmetries in gait kinematics and kinetics were present, with the exception of a substantial asymmetry of the trunk lateral flexion. Increased walking speed did not result in increased asymmetries in gait kinematics and kinetics. Hip muscle strength was symmetrical in patients, but significantly weaker than in healthy subjects. Trunk kinematics should be included as an outcome measure to assess the biomechanical benefits of the THA surgery after DDH.


Journal of Biomechanics | 2018

In situ comparison of A-mode ultrasound tracking system and skin-mounted markers for measuring kinematics of the lower extremity

Kenan Niu; Thomas Anijs; Victor IJzebrand Sluiter; Jasper Johan Homminga; André Sprengers; Marco A. Marra; Nico Verdonschot

Skin-mounted marker based motion capture systems are widely used in measuring the movement of human joints. Kinematic measurements associated with skin-mounted markers are subject to soft tissue artifacts (STA), since the markers follow skin movement, thus generating errors when used to represent motions of underlying bone segments. We present a novel ultrasound tracking system that is capable of directly measuring tibial and femoral bone surfaces during dynamic motions, and subsequently measuring six-degree-of-freedom (6-DOF) tibiofemoral kinematics. The aim of this study is to quantitatively compare the accuracy of tibiofemoral kinematics estimated by the ultrasound tracking system and by a conventional skin-mounted marker based motion capture system in a cadaveric experimental scenario. Two typical tibiofemoral joint models (spherical and hinge models) were used to derive relevant kinematic outcomes. Intra-cortical bone pins equipped with optical markers were inserted in the tibial and femoral bones to serve as a reference to provide ground truth kinematics. The ultrasound tracking system resulted in lower kinematic errors than the skin-mounted markers (the ultrasound tracking system: maximum root-mean-square (RMS) error 3.44° for rotations and 4.88 mm for translations, skin-mounted markers with the spherical joint model: 6.32° and 6.26 mm, the hinge model: 6.38° and 6.52 mm). Our proposed ultrasound tracking system has the potential of measuring direct bone kinematics, thereby mitigating the influence and propagation of STA. Consequently, this technique could be considered as an alternative method for measuring 6-DOF tibiofemoral kinematics, which may be adopted in gait analysis and clinical practice.


Neuromuscular Disorders | 2017

Specific muscle strength is reduced in facioscapulohumeral dystrophy: An MRI based musculoskeletal analysis

Marco A. Marra; L. Heskamp; Karlien Mul; S. Lassche; Baziel G.M. van Engelen; Arend Heerschap; Nico Verdonschot

The aim was to test whether strength per unit of muscle area (specific muscle strength) is affected in facioscapulohumeral dystrophy (FSHD) patients, as compared to healthy controls. Ten patients and ten healthy volunteers underwent an MRI examination and maximum voluntary isometric contraction measurements (MVICs) of the quadriceps muscles. Contractile muscle volume, as obtained from the MR images, was combined with the MVICs to calculate the physiological cross-sectional area (PCSA) and muscle strength using a musculoskeletal model. Subsequently, specific strength was calculated for each subject as muscle strength divided by total PCSA. FSHD patients had a reduced quadriceps muscle strength (median(1st quartile-3rd quartile): 2011 (905.4-2775) N vs. 5510 (4727-8321) N, p <0.001) and total PCSA (83.6 (62.3-124.8) cm2vs. 140.1(97.1-189.9) cm2, p = 0.015) compared to healthy controls. Furthermore, the specific strength of the quadriceps was significantly lower in patients compared to healthy controls (20.9 (14.7-24.0) N/cm2vs. 41.9 (38.3-49.0) N/cm2, p <0.001). Thus, even when correcting for atrophy and fatty infiltration, patients with FSHD generated less force per unit area of residual muscle tissue than healthy controls. Possible explanations include impaired force propagation due to fatty infiltration, reduced intrinsic force-generating capacity of the muscle fibers, or mitochondrial abnormalities leading to impaired energy metabolism.


Journal of Biomechanical Engineering-transactions of The Asme | 2015

A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.

Marco A. Marra; Valentine Vanheule; René Fluit; Bart F.J.M. Koopman; John Rasmussen; Nico Verdonschot; Michael Skipper Andersen


Osteoarthritis and Cartilage | 2016

A subject-specific analysis framework to investigate gait alterations

Christine Mary Dzialo; Marco Mannisi; Marco A. Marra; R. Richards; Scott Telfer; James Woodburn; M. de Zee; Michael Skipper Andersen


Knee Surgery, Sports Traumatology, Arthroscopy | 2018

Flexing and downsizing the femoral component is not detrimental to patellofemoral biomechanics in posterior-referencing cruciate-retaining total knee arthroplasty

Marco A. Marra; Marta Strzelczak; Petra J. C. Heesterbeek; Sebastiaan van de Groes; Dennis Janssen; Bart F.J.M. Koopman; Nico Verdonschot; Ate B. Wymenga

Collaboration


Dive into the Marco A. Marra's collaboration.

Top Co-Authors

Avatar

Nico Verdonschot

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Dennis Janssen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Strzelczak

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentine Vanheule

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge