Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco A. Ramírez is active.

Publication


Featured researches published by Marco A. Ramírez.


Journal of Applied Phycology | 1999

Copper, copper mine tailings and their effect on marine algae in Northern Chile

Juan A. Correa; Juan Carlos Castilla; Marco A. Ramírez; Manuel Varas; Nelson A. Lagos; Sofia Vergara; Alejandra Moenne; Domingo Román; Murray T. Brown

Results are presented of a long-term research programme on the effect of copper contamination on biota in Chilean coastal waters. In spite of the magnitude of the copper mining tailings that affected Caleta Palito and surroundings in northern Chile, the effects on the intertidal assemblages remain restricted to a small geographic area. Even within the affected area, the effects are not homogeneous and there is evidence of active recovery in biological diversity in recent few years. Experimental evidence suggests that the current low algal diversity and abundance is strongly influenced by herbivory, although chronic effects of the discharges cannot be ruled out. Cellular changes in Enteromorpha compressa from the impacted area were characterised by abnormal granules in the cytoplasm, though these granules did not contain detectable levels of copper or other heavy metals.


Experimental Diabetes Research | 2011

Fetoplacental Vascular Endothelial Dysfunction as an Early Phenomenon in the Programming of Human Adult Diseases in Subjects Born from Gestational Diabetes Mellitus or Obesity in Pregnancy

Andrea Leiva; Fabián Pardo; Marco A. Ramírez; Marcelo Farías; Paola Casanello; Luis Sobrevia

Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the “endothelial L-arginine/nitric oxide signalling pathway.” Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an “altered metabolic state” leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome.


Environmental Monitoring and Assessment | 2000

Copper, Copper Mining Effluents and Grazing as Potential Determinants of Algal Abundance and Diversity in Northern Chile

Juan A. Correa; Marco A. Ramírez; Jean-Paul de la Harpe; Domingo Román; Lidia Rivera

We experimentally tested threealternative hypotheses to explain the low algaldiversity and abundance in an intertidal zonereceiving the effluents of the copper mine El Salvadorin northern Chile. Our results demonstrated thatalgae were able to grow at the levels of dissolvedcopper detected in coastal waters of the area. Duringthe assays, growth and regeneration in several red,green and brown adult algae and juvenile Lessonia nigrescens were normal at copper levels of150 μg L-1 or, in some cases, higher. Wealso found that the coastal sea water mixed with theeffluent was not lethal to algae, although in somecases minor effects on growth were detected. Theseresults indicate that todays low algal diversity andabundance can not be explained by the current copperlevels in the area nor by the effect of the effluent.Exclusion of grazers, however, resulted in a fastcolonization by various algal species. This, togetherwith atypically high grazer density at the areas underthe influence of the effluent, strongly suggests thatherbivory, a factor not directly related to the miningoperation, is likely to be responsible for the lowalgal diversity and abundance in the studied locality.


PLOS ONE | 2012

Potential Role of Sodium-Proton Exchangers in the Low Concentration Arsenic Trioxide-Increased Intracellular pH and Cell Proliferation

Carmen Aravena; Ana Rosa Beltrán; Marcelo Cornejo; Viviana Torres; Emilce S. Diaz; Enrique Guzmán-Gutiérrez; Fabián Pardo; Andrea Leiva; Luis Sobrevia; Marco A. Ramírez

Arsenic main inorganic compound is arsenic trioxide (ATO) presented in solution mainly as arsenite. ATO increases intracellular pH (pHi), cell proliferation and tumor growth. Sodium-proton exchangers (NHEs) modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK) cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0–48 hours) in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5–100 µmol/L, NHEs inhibitor), PD-98059 (30 µmol/L, MAPK1/2 inhibitor), Gö6976 (10 µmol/L, PKCα, βI and μ inhibitor), or Schering 28080 (10 µmol/L, H+/K+ATPase inhibitor) plus concanamycin (0.1 µmol/L, V type ATPases inhibitor). Incorporation of [3H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na+-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44mapk) were also determined. Lowest ATO (0.05 µmol/L, ∼0.01 ppm) used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1)-like transport dependent-increased pHi requiring p42/44mapk and PKCα, βI and/or μ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and in circumstances where ATO, likely arsenite, is available at the drinking-water at these levels.


Current Vascular Pharmacology | 2011

Functional link between adenosine and insulin: a hypothesis for fetoplacental vascular endothelial dysfunction in gestational diabetes.

Enrique Guzmán-Gutiérrez; Fernando Abarzúa; Cristián Belmar; Jyh K. Nien; Marco A. Ramírez; Pablo Arroyo; Carlos Salomon; Francisco Westermeier; Carlos Puebla; Andrea Leiva; Paola Casanello; Luis Sobrevia

Gestational diabetes mellitus (GDM) is a syndrome compromising the health of the mother and the fetus. Endothelial damage and reduced metabolism of the vasodilator adenosine occur and fetal hyperinsulinemia associated with deficient insulin response and a metabolic rather than mitogenic phenotype is characteristic of this pathology. These phenomena lead to endothelial dysfunction of the fetoplacental unit. Major databases were searched for the relevant literature in the field. Special attention was placed on publications related with diabetes and hormone/metabolic disorders. We aimed to summarize the information regarding insulin sensitivity changes in GDM and the role of adenosine in this phenomenon. Evidence supporting the possibility that fetal endothelial dysfunction involves a functional link between adenosine and insulin signaling in the fetal endothelium from GDM pregnancies is summarized. Since insulin acts via membrane receptors type A (preferentially associated with mitogenic responses) or type B (preferentially associated with metabolic responses), a differential activation of these receptors in this syndrome is proposed.


Current Molecular Medicine | 2016

Modulation of intracellular pH in human ovarian cancer.

Carlos Sanhueza; Joaquín Araos; Luciano Naranjo; Roberto Villalobos; Francisco Westermeier; Carlos Salomon; Ana Rosa Beltrán; Marco A. Ramírez; Jaime Gutiérrez; Fabián Pardo; Andrea Leiva; Luis Sobrevia

To sustain tumor growth, the cancer cells need to adapt to low levels of oxygen (i.e., hypoxia) in the tumor tissue and to the tumor-associated acidic microenvironment. In this phenomenon, the activation of the sodium/proton exchanger 1 (NHE1) at the plasma membrane and the hypoxia-inducible factor (HIF) are critical for the control of the intracellular pH (pHi) and for hypoxia adaptation, respectively. Interestingly, both of these mechanisms end in sustaining cancer cell proliferation. However, regulatory mechanisms of pHi in human ovary tissue and in malignant ascites are unknown. Additionally, a potential role of NHE1 in the modulation of H(+) efflux in human ovarian cancer cells is unknown. In this review, we discussed the characteristics of tumor microenvironment of primary human ovarian tumors and tumor ascites, in terms of pHi regulatory mechanisms and oxygen level. The findings described in the literature suggest that NHE1 may likely play a role in pHi regulation and cell proliferation in human ovarian cancer, potentially involving HIF2α activation. Since ovarian cancer is the fifth cause of prevalence of women cancer in Chile and is usually of late diagnosis, i.e., when the disease jeopardizes peritoneal cavity and other organs, resulting in reduced patient survival, new efforts are required to improve patient-life span and for a better understanding of the pathophysiology of the disease. The potential advantage of the use of amiloride and amiloride-derivatives for cancer treatment in terms of NHE1 expression and activity is also discussed as a therapeutic approach in human ovarian cancer.


Biochimica et Biophysica Acta | 2017

Sodium/proton exchanger isoform 1 regulates intracellular pH and cell proliferation in human ovarian cancer

Carlos Sanhueza; Joaquín Araos; Luciano Naranjo; Fernando Toledo; Ana Rosa Beltrán; Marco A. Ramírez; Jaime Gutiérrez; Fabián Pardo; Andrea Leiva; Luis Sobrevia

Cancer cells generate protons (H+) that are extruded to the extracellular medium mainly via the Na+/H+ exchanger 1 (NHE1), which regulates intracellular pH (pHi) and cell proliferation. In primary cultures of human ascites-derived ovarian cancer cells (haOC) we assayed whether NHE1 was required for pHi modulation and cell proliferation. Human ovary expresses NHE1, which is higher in haOC and A2780 (ovarian cancer cells) compared with HOSE cells (normal ovarian cells). Basal pHi and pHi recovery (following a NH4Cl pulse) was higher in haOC and A2780, compared with HOSE cells. Zoniporide (NHE1 inhibitor) caused intracellular acidification and pHi recovery was independent of intracellular buffer capacity, but reduced in NHE1 knockdown A2780 cells. Zoniporide reduced the maximal proliferation capacity, cell number, thymidine incorporation, and ki67 (marker of proliferation) fluorescence in haOC cells. SLC9A1 (for NHE1) amplification associated with lower overall patient survival. In conclusion, NHE1 is expressed in human ovarian cancer where it has a pro-proliferative role. Increased NHE1 expression and activity constitute an unfavourable prognostic factor in these patients.


Biology of Sport | 2014

Effects of general, specific and combined warm-up on explosive muscular performance

David C. Andrade; Carlos Henríquez-Olguín; Ana Rosa Beltrán; Marco A. Ramírez; Cristian Labarca; Marcelo Cornejo; Cristian Álvarez; Rodrigo Ramírez-Campillo

The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises – 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump – SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU.


PLOS ONE | 2015

Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells.

Ana Rosa Beltrán; Luciene Regina Carraro-Lacroix; Camila N. A. Bezerra; Marcelo Cornejo; Katrina Norambuena; Fernando Toledo; Joaquín Araos; Fabián Pardo; Andrea Leiva; Carlos Sanhueza; Gerhard Malnic; Luis Sobrevia; Marco A. Ramírez

The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF–preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (J H +) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and J H + (~63%), without altering basal pHi (range 7.144–7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and J H + was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa–decreased dpHi/dt and J H + was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human diarrhoea.


Biochimica et Biophysica Acta | 2018

Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells

Marco A. Ramírez; Jorge Morales; Marcelo Cornejo; Elias H. Blanco; Edgardo Mancilla-Sierpe; Fernando Toledo; Ana Rosa Beltrán; Luis Sobrevia

l-Arginine is taken up via the cationic amino acid transporters (system y+/CATs) and system y+L in human umbilical vein endothelial cells (HUVECs). l-Arginine is the substrate for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but nothing is known regarding modulation of system y+/CATs and system y+L activity, and eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates l-arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe were subjected to 0.1-20 mmol/L NH4Cl pulse assay to generate pHi 7.13-6.55. Before pHi started to recover, l-arginine transport (0-20 or 0-1000 μmol/L, 10 s, 37 °C) in the absence or presence of 200 μmol/L N-ethylmaleimide (NEM) (system y+/CATs inhibitor) or 2 mmol/L l-leucine (systemy+L substrate) was measured. Protein abundance for eNOS and serine1177 or threonine495 phosphorylated eNOS was determined. The results show that intracellular acidification reduced system y+L but not system y+/CATs mediated l-arginine maximal transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and eNOS serine1177 phosphorylation. Thus, system y+L activity is downregulated by an acidic pHi, a phenomenon that may result in reduced NO synthesis in HUVECs.

Collaboration


Dive into the Marco A. Ramírez's collaboration.

Top Co-Authors

Avatar

Luis Sobrevia

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Leiva

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Fabián Pardo

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Carlos Sanhueza

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Fernando Toledo

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Joaquín Araos

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Marcelo Cornejo

University of Antofagasta

View shared research outputs
Top Co-Authors

Avatar

Juan A. Correa

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Gerhard Malnic

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge