Marco Alberto Medeiros
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Alberto Medeiros.
PLOS Neglected Tropical Diseases | 2013
Carolina Lessa-Aquino; Camila Borges Rodrigues; Jozelyn Pablo; Rie Sasaki; Algis Jasinskas; Li Liang; Elsio A. Wunder; Guilherme S. Ribeiro; Adam Vigil; Ricardo Galler; Douglas M. Molina; Xiaowu Liang; Mitermayer G. Reis; Albert I. Ko; Marco Alberto Medeiros; Philip L. Felgner
Background Leptospirosis is a widespread zoonotic disease worldwide. The lack of an adequate laboratory test is a major barrier for diagnosis, especially during the early stages of illness, when antibiotic therapy is most effective. Therefore, there is a critical need for an efficient diagnostic test for this life threatening disease. Methodology In order to identify new targets that could be used as diagnostic makers for leptopirosis, we constructed a protein microarray chip comprising 61% of Leptospira interrogans proteome and investigated the IgG response from 274 individuals, including 80 acute-phase, 80 convalescent-phase patients and 114 healthy control subjects from regions with endemic, high endemic, and no endemic transmission of leptospirosis. A nitrocellulose line blot assay was performed to validate the accuracy of the protein microarray results. Principal findings We found 16 antigens that can discriminate between acute cases and healthy individuals from a region with high endemic transmission of leptospirosis, and 18 antigens that distinguish convalescent cases. Some of the antigens identified in this study, such as LipL32, the non-identical domains of the Lig proteins, GroEL, and Loa22 are already known to be recognized by sera from human patients, thus serving as proof-of-concept for the serodiagnostic antigen discovery approach. Several novel antigens were identified, including the hypothetical protein LIC10215 which showed good sensitivity and specificity rates for both acute- and convalescent-phase patients. Conclusions Our study is the first large-scale evaluation of immunodominant antigens associated with naturally acquired leptospiral infection, and novel as well as known serodiagnostic leptospiral antigens that are recognized by antibodies in the sera of leptospirosis cases were identified. The novel antigens identified here may have potential use in both the development of new tests and the improvement of currently available assays for diagnosing this neglected tropical disease. Further research is needed to assess the utility of these antigens in more deployable diagnostic platforms.
Protein Expression and Purification | 2011
Ariane Leites Larentis; Ana Paula Corrêa Argondizzo; Gabriela dos Santos Esteves; Ricardo Galler; Marco Alberto Medeiros
The gene corresponding to mature PsaA from Streptococcus pneumoniae serotype 14 was cloned into a plasmid with kanamycin resistance and without a purification tag in Escherichia coli to express high levels of the recombinant protein for large-scale production as a potential vaccine candidate or as a carrier for polysaccharide conjugation at Bio-Manguinhos/Fiocruz. The evaluation of induction conditions (IPTG concentration, temperature and time) in E. coli was accomplished by experimental design techniques to enhance the expression level of mature recombinant PsaA (rPsaA). The optimization of induction process conditions led us to perform the recombinant protein induction at 25°C for 16 h, with 0.1mM IPTG in Terrific Broth medium. At these conditions, the level of mature rPsaA expression obtained in E. coli BL21 (DE3) Star by pET28a induction with IPTG was in the range of 0.8 g/L of culture medium, with a 10-fold lower concentration of inducer than usually employed, which contributes to a less expensive process. Mature rPsaA expressed in E. coli BL21 (DE3) Star accounted for approximately 30-35% of the total protein. rPsaA purification by ion exchange allowed the production of high-purity recombinant protein without fusion tags. The results presented in this work confirm that the purified recombinant protein maintains its stability and integrity for long periods of time in various storage conditions (temperatures of 4 or -70°C using different cryoprotectors) and for at least 3 years at 4 or -70°C in PBS. The conformation of the stored protein was confirmed using circular dichroism. Mature rPsaA antigenicity was proven by anti-rPsaA mouse serum recognition through western blot analysis, and no protein degradation was detected after long periods of storage.
Microbiology | 2002
Marco Alberto Medeiros; Odir A. Dellagostin; Geraldo R. G. Armôa; Wim Degrave; Leila Mendonça-Lima; Marcia Q. Lopes; Joseane F. Costa; Johnjoe McFadden; Douglas McIntosh
Mycobacterium vaccae represents an alternative mycobacterial cloning host that has been largely overlooked to date. The main reason for this may be the reported non-transformability of this species, specifically the so-called Stanford strain (NCTC 11659), with expression vectors that use kanamycin resistance as a selection method. However, this strain can be transformed using hygromycin resistance as an alternative selectable phenotype. The present study has shown that in contrast to previous reports, M. vaccae (ATCC 15483) is capable of being transformed with a range of vectors encoding kanamycin resistance as the selectable marker. Thereafter, the expression of the lacZ reporter gene in M. vaccae, Mycobacterium bovis BCG and Mycobacterium smegmatis mc(2)155 was evaluated using a range of characterized mycobacterial promoter sequences (hsp60, hsp70, PAN, 18kDa and 16S rRNA) cloned in the same promoter probe vector. In general, the promoters showed similar levels of activity in the three species, demonstrating that existing expression systems can readily be employed with M. vaccae (ATCC 15483). This was further confirmed by the observation that M. vaccae was capable of stable, in vitro expression of recombinant S1 subunit of pertussis toxin at levels equivalent to those obtained with BCG and M. smegmatis. Analysis of structural and functional stability of a range of vectors demonstrated that the incidence of instability noted for M. vaccae was lower than that recorded for M. smegmatis. Taken together, the results indicate that M. vaccae is an additional cloning host which may prove useful for specific aspects of mycobacterial biology and provide increased flexibility to the field of recombinant protein technology for mycobacteria.
Epidemiology and Infection | 2013
Camila Hamond; Gabriel Martins; R. Lawson-Ferreira; Marco Alberto Medeiros; Walter Lilenbaum
The objective of this study was to demonstrate the presence of leptospires in equine urine, as evidence for a potential role of horses in transmission of this organism. Thoroughbred horses (aged 2-5 years, n = 276) from Rio de Janeiro, Brazil, were studied. After a severe storm, the premises of the animals remained flooded for 72 h. Blood samples for serology were collected on days 20 and 35 (day of storm = day 0). On day 20, 132 (47·8%) horses were seroreactive (titre ≥200) and, of these, 23 (31·0%) had increased antibody titres on day 35. Furthermore, 34 urine samples (for PCR and culture) were collected from seroreactive horses on day 35. Copenhageni was the most frequent serovar (88·8% of reactive titres). Although none of the urine samples were culture positive, 12 (35·2%) were PCR positive. This is apparently the first report of evidence of leptospires in urban horses. Furthermore, we suggest that these animals can play a role in the transmission of leptospirosis in urban areas.
PLOS Neglected Tropical Diseases | 2012
Scott A. Nabity; Guilherme S. Ribeiro; Carolina Lessa Aquino; Daniele Takahashi; Alcinéia Oliveira Damião; André H. O. Gonçalves; Demócrito de Barros Miranda-Filho; Rena Greenwald; Javan Esfandiari; Konstantin P. Lyashchenko; Mitermayer G. Reis; Marco Alberto Medeiros; Albert I. Ko
Background Diagnosis of leptospirosis by the gold standard serologic assay, the microscopic agglutination test (MAT), requires paired sera and is not widely available. We developed a rapid assay using immunodominant Leptospira immunoglobulin-like (Lig) proteins in a Dual Path Platform (DPP). This study aimed to evaluate the assays diagnostic performance in the setting of urban transmission. Methodology We determined test sensitivity using 446 acute and convalescent sera from MAT-confirmed case-patients with severe or mild leptospirosis in Brazil. We assessed test specificity using 677 sera from the following groups: healthy residents of a Brazilian slum with endemic transmission, febrile outpatients from the same slum, healthy blood donors, and patients with dengue, hepatitis A, and syphilis. Three operators independently interpreted visual results without knowing specimen status. Results The overall sensitivity for paired sera was 100% and 73% for severe and mild disease, respectively. In the acute phase, the assay achieved a sensitivity of 85% and 64% for severe and mild leptospirosis, respectively. Within seven days of illness onset, the assay achieved a sensitivity of 77% for severe disease and 60% for mild leptospirosis. Sensitivity of the DPP assay was similar to that for IgM-ELISA and increased with both duration of symptoms (chi-square regression P = 0.002) and agglutinating titer (Spearman ρ = 0.24, P<0.001). Specificity was ≥93% for dengue, hepatitis A, syphilis, febrile outpatients, and blood donors, while it was 86% for healthy slum residents. Inter-operator agreement ranged from very good to excellent (kappa: 0.82–0.94) and test-to-test reproducibility was also high (kappa: 0.89). Conclusions The DPP assay performed acceptably well for diagnosis of severe acute clinical leptospirosis and can be easily implemented in hospitals and health posts where leptospirosis is a major public health problem. However, test accuracy may need improvement for mild disease and early stage leptospirosis, particularly in regions with high transmission.
Vaccine | 2011
Karen Einsfeldt; João Baptista Severo Júnior; Ana Paula Corrêa Argondizzo; Marco Alberto Medeiros; Tito Lívio Moitinho Alves; Rodrigo Volcan Almeida; Ariane Leites Larentis
Infections caused by Streptococcus pneumoniae are one of the main causes of death around the world. In order to address this problem, investigations are being made into the development of a protein-based vaccine. The aims of this study were to clone and express ClpP, a protein from S. pneumoniae serotype 14 in Escherichia coli, to optimize protein expression by using experimental design and to study plasmid segregation in the system. ClpP was cloned into the pET28b vector and expressed in E. coli BL21 Star (DE3). Protein expression was optimized by using central composite design, varying the inducer (IPTG) and kanamycin concentration, with a subsequent analysis being made of the concentration of heterologous protein, cell growth and the fraction of plasmid-bearing cells. In all the experiments, approximately the same concentration of ClpP was expressed in its soluble form, with a mean of 240.4mg/L at the center point. Neither the IPTG concentration nor the kanamycin concentration was found to have any statistically significant influence on protein expression. Also, higher IPTG concentrations were found to have a negative effect on cell growth and plasmid stability. Plasmid segregation was identified in the system under all the concentrations studied. Using statistical analysis, it was possible to ascertain that the procedures for determining plasmid stability (serial dilution and colony counting) were reproducible. It was concluded that the inducer concentration could be reduced tenfold and the antibiotic eliminated from the system without significantly affecting expression levels and with the positive effect of reducing costs.
Clinical and Vaccine Immunology | 2011
Samuel Rodrigues Felix; Daiane D. Hartwig; Ana Paula Corrêa Argondizzo; Éverton Fagonde da Silva; Fabiana Kömmling Seixas; Amilton Clair Pinto Seixas Neto; Marco Alberto Medeiros; Walter Lilenbaum; Odir A. Dellagostin
ABSTRACT Leptospirosis is the most widespread zoonosis in the world. Current vaccines are based on whole-cell preparations that cause severe side effects and do not induce satisfactory immunity. In light of the leptospiral genome sequences recently made available, several studies aimed at identification of protective recombinant immunogens have been performed; however, few such immunogens have been identified. The aim of this study was to evaluate 27 recombinant antigens to determine their potential to induce an immune response protective against leptospirosis in the hamster model. Experiments were conducted with groups of female hamsters immunized with individual antigen preparations. Hamsters were then challenged with a lethal dose of Leptospira interrogans. Thirteen antigens induced protective immune responses; however, only recombinant proteins LIC10325 and LIC13059 induced significant protection against mortality. These results have important implications for the development of an efficacious recombinant subunit vaccine against leptospirosis.
Journal of Medical Microbiology | 2009
Adenizar D. Chagas-Junior; Alan J. A. McBride; Daniel Abensur Athanazio; Cláudio Pereira Figueira; Marco Alberto Medeiros; Mitermayer G. Reis; Albert I. Ko; Flávia Weykamp da Cruz McBride
In determining the efficacy of new vaccine candidates for leptospirosis, the primary end point is death and an important secondary end point is sterilizing immunity. However, evaluation of this end point is often hampered by the time-consuming demands and complexity of methods such as culture isolation (CI). In this study, we evaluated the use of an imprint (or touch preparation) method (IM) in detecting the presence of leptospires in tissues of hamsters infected with Leptospira interrogans serovar Copenhageni. In a dissemination study, compared to CI, the IM led to equal or improved detection of leptospires in kidney, liver, lung and blood samples collected post-infection and overall concordance was good (kappa=0.61). Furthermore, in an evaluation of hamsters immunized with a recombinant leptospiral protein-based vaccine candidate and subsequently challenged, the agreement between the CI and IM was very good (kappa=0.84). These findings indicate that the IM is a rapid method for the direct observation of Leptospira spp. that can be readily applied to evaluating infection in experimental animals and determining sterilizing immunity when screening potential vaccine candidates.
PLOS Neglected Tropical Diseases | 2017
Neida Lucia Conrad; Flávia W. Cruz McBride; Jéssica Dias Souza; Marcelle Moura Silveira; Samuel Rodrigues Felix; Karla S. Mendonça; Cleiton S. Santos; Daniel Abensur Athanazio; Marco Alberto Medeiros; Mitermayer G. Reis; Odir A. Dellagostin; Alan J. A. McBride
Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131–645)) and aluminium hydroxide (AH), in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0–100%, P < 0.05) against mortality in vaccinated animals in seven independent experiments. The efficacy of the LigB(131–645)/AH vaccine ranged from 87.5–100% and we observed sterile immunity (87.5–100%) among the vaccinated survivors. Significant levels of IgM and IgG were induced among vaccinated animals, although they did not correlate with immunity. A mixed IgG1/IgG2 subclass profile was associated with the subunit vaccine, compared to the predominant IgG2 profile seen in bacterin vaccinated hamsters. These findings suggest that LigB(131–645) is a vaccine candidate against leptospirosis with potential ramifications to public and veterinary health.
Memorias Do Instituto Oswaldo Cruz | 2012
Daniel Ignacchiti Lacerda; Léa Cysne-Finkelstein; Marise P. Nunes; Paula Mello De-Luca; Marcelo Genestra; Leonor L. Leon; Marcia Berrêdo-Pinho; Leila Mendonça-Lima; Denise Cristina de Souza Matos; Marco Alberto Medeiros; Sergio C.F. Mendonça
In Leishmania amazonensis, kinetoplastid membrane protein-11 (KMP-11) expression increases during meta-cyclogenesis and is higher in amastigotes than in promastigotes, suggesting a role for this protein in the infection of the mammalian host. We show that the addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide (NO) production. The doses of KMP-11, the IL-10 levels and the intracellular amastigote loads were strongly, positively and significantly correlated. The increase in parasite load induced by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10 neutralising antibodies, but not by isotype controls. The neutralising antibodies, but not the isotype controls, were also able to significantly decrease the parasite load in macrophages cultured without the addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection is not dependent on the addition of exogenous KMP-11 and that the protein naturally expressed by the parasite is able to promote it. In this study, the exacerbating effect of KMP-11 on macrophage infection with Leishmania is for the first time demonstrated, implicating it as a virulence factor in L. amazonensis. The stimulation of IL-10 production and arginase activity and the inhibition of NO synthesis are likely involved in this effect.