Marco Antônio Batalha
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Antônio Batalha.
Ecology | 2009
M. V. Cianciaruso; Marco Antônio Batalha; Kevin J. Gaston; Owen L. Petchey
Linking species and ecosystems often relies on approaches that consider how the traits exhibited by species affect ecosystem processes. One method is to estimate functional diversity (FD) based on the dispersion of species in functional trait space. Individuals within a species also differ, however, and an unresolved challenge is how to include such intraspecific variability in a measure of functional diversity. Our solution is to extend an existing measure to variation among individuals within species. Here, simulations demonstrate how the new measure behaves relative to one that does not include individual variation. Individual-level FD was less well associated with species richness than species-level FD in a single trait dimension, because species differed in their intraspecific variation. However, in multiple trait dimensions, there was a strong association between individual- and species-level FD and richness, because many traits result in a tight relationship between functional diversity and species richness. The correlation between the two FD measures weakened as the amount of intraspecific variability increased. Analyzing natural plant communities we found no relationship between species richness and functional diversity. In these analyses, we did not have to specify the source of intraspecific variation. In fact, the variation was only among individuals. The measure can, however, include differences in the amount of intraspecific variation at different sites, as we demonstrate. Including intraspecific variation should allow a more complete understanding of the processes that link individuals and ecosystems and provide better predictions about the consequences of extinctions for ecosystem processes.
Ecology | 2013
Vinícius de L. Dantas; Marco Antônio Batalha; Juli G. Pausas
In tropical landscapes, vegetation patches with contrasting tree densities are distributed as mosaics. However, the locations of patches and densities of trees within them cannot be predicted by climate models alone. It has been proposed that plant-fire feedbacks drive functional thresholds at a landscape scale, thereby maintaining open (savanna) and closed (forest) communities as two distinct stable states. However, there is little rigorous field evidence for this threshold model. Here we aim to provide support for such a model from a field perspective and to analyze the functional and phylogenetic consequences of fire in a Brazilian savanna landscape (Cerrado). We hypothesize that, in tropical landscapes, savanna and forest are two stable states maintained by plant-fire feedbacks. If so, their functional and diversity attributes should change abruptly along a community closure gradient. We set 98 plots along a gradient from open savanna to closed forest in the Brazilian Cerrado and tested for a threshold pattern in nine functional traits, five soil features, and seven diversity indicators. We then tested whether the threshold pattern was associated with different fire regimes. Most community attributes presented a threshold pattern on the savanna-forest transition with coinciding breakpoints. The thresholds separated two community states: (1) open environments with low-diversity communities growing in poor soils and dominated by plants that are highly resistant to high-intensity fires; and (2) closed environments with highly diverse plant communities growing in more fertile soils and dominated by shade-tolerant species that efficiently prevent light from reaching the understory. In addition, each state was associated with contrasting fire regimes. Our results are consistent with the hypothesis that forests and savannas are two coexisting stable states with contrasting patterns of function and diversity that are regulated by fire-plant feedbacks; our results also shed light on the mechanism driving each state. Overall, our results support the idea that fire plays an important role in regulating the distribution of savanna and forest biomes in tropical landscapes.
Plant and Soil | 2008
Danilo Muniz da Silva; Marco Antônio Batalha
Fire is an important ecological factor that structures savannas, such as the cerrado, by selecting plant species and altering soil nutrient content. In Emas National Park, central Brazil, we compared soils under three different fire regimes and their relationship to the cerrado species they support. We collected 25 soil and vegetation samples at each site. We found differences in soil characteristics (p < 0.05), with fertility and fire frequency positively related: in the annually burned site we found higher values of organic matter, nitrogen, and clay, whereas in the protected site we detected lower values of pH and higher values of aluminum. We also observed differences in plant community structure, with distinct floristic compositions in each site. Floristic composition was more related to sand proportion (intra-set correlation = 0.834). Different fire frequencies increase environmental heterogeneity and beta diversity in the Brazilian cerrado.
Environmental Modelling and Software | 2010
Gustavo Henrique de Carvalho; Marcus Vinicius Cianciaruso; Marco Antônio Batalha
Plantminer is a web tool designed to reduce the effort of compiling, checking, and formatting seed plants species data. It will search for orders, families, authors, synonyms, and make sure that all species in a plant species list exist or are correctly spelled. Plantminer also compares species in pairs, removing duplicated entries, warning the user when there are synonyms in the submitted list, and replacing them by the currently accepted names. The output is compiled in tab-delimited text files, which are compatible with most statistical packages. Plantminer covers seed plant species on a global basis.
Plant Ecology | 2011
Danilo Muniz da Silva; Marco Antônio Batalha
Plants have traits against herbivory that may occur together and increase defense efficiency. We tested whether there are defense syndromes in a cerrado community and, if so, whether there is a phylogenetic signal in them. We measured nine defense traits from a woodland cerrado community in southeastern Brazil. We tested the correlation between all pairs of traits and grouped the species into defense syndromes according to their traits. Most pairwise correlations of traits were complementary. Plants with lower specific leaf area also presented tougher leaves, with low nitrogen, more trichomes, and tannins. We found five syndromes: two with low defenses and high nutritional quality, two with high defenses and low nutritional quality, and one with traits compensating each other. There were two predominant strategies against herbivory in cerrado: “tolerance” and “low nutritional quality” syndromes. Phylogeny did not determine the suite of traits species presented. We argue that herbivory exerts significant selection pressure on these plant defense traits.
Biota Neotropica | 2009
Marcus Vinicius Cianciaruso; Igor Aurélio Silva; Marco Antônio Batalha
Although diversity seems to be the most intuitive ecological concept, no consensual definition has been stated. Traditional diversity measures, which take into account only the number of species and their relative contribution, have little predictive power about the functioning of communities. Diversity measures that include information on phylogenetic relationships among species or their functional traits should be better than the traditional measures. We present a short review of the properties and applications of some diversity measures, emphasizing two recent and promising approaches, the phylogenetic and functional diversities, which have been shown to be more sensitive to detect responses of communities to environmental changes. In phylogenetic diversity, species relatedness is taken into account, whereas in functional diversity traits related with community functioning are considered. We also discuss challenges and perspectives for the use of these two approaches in ecology.
Brazilian Journal of Biology | 2006
F. Q. Martins; Marco Antônio Batalha
Plant species present flowers with varied morphological and functional features, which may be associated to pollination systems, including species pollinated by wind, beetles, moths, bees, small insects, birds, or bats. We calculated the frequencies of the pollination systems among woody species in five cerrado fragments in central-western Brazil and tested whether the pollination systems were indeed related to floral traits. We sampled 2,280 individuals, belonging to 121 species, ninety-nine of which were described in relation to all floral traits. Most species had diurnal anthesis, pale colors, and open flowers. The most frequent groups were those composed by the species pollinated by bees, small insects, and moths. A Principal Component Analysis of the species and floral traits showed that there was a grouping among species with some pollination systems, such as those pollinated mainly by beetles, moths, birds, and bats, for which inferences based on the floral traits are recommended in cerrado sites. For the species pollinated mainly by bees or small insects, inferences based on the floral traits are not recommended, due to the large dispersion of the species scores and overlapping between these two groups, which probably occurred due to the specificity absence in plant-pollinator relationships.
Brazilian Journal of Biology | 2006
Priscilla Kobayashi Amorim; Marco Antônio Batalha
Savannas may be divided according to their seasonality into semi-seasonal, seasonal, hyperseasonal, or marshy savannas. Hyperseasonal savannas are characterized by the alternation of two contrasting stresses during each annual cycle, one induced by drought and fire and the other, by waterlogging. In South America, the largest savanna region is the Brazilian cerrado, in which there are few hyperseasonal areas that become waterlogged in the rainy season. The cerrado soils are generally well drained, but in central Brazil there is a small cerrado area in which the soil is poorly drained and which becomes waterlogged in the middle of the rainy season, allowing the appearance of a hyperseasonal cerrado. As long as soil is important in the ecology of the cerrado vegetation, we asked whether the waterlogging in this hyperseasonal cerrado implied that there were differences in soil characteristics in relation to a seasonal cerrado, which is not waterlogged in the rainy season, and to a floodplain grassland, which remains waterlogged throughout the year. In each environment, we randomly selected ten points, in which we collected soil samples in the mid-rainy season for chemical and granulometric analyses. For all variables, we found significant differences among the three environments, at least at one of the depths. Nevertheless, when we took into account all the variables together, we observed that the soils under the hyperseasonal and seasonal cerrados were similar and both were different to the soil under the floodplain grassland. The soil under the floodplain grassland was related to larger amounts of clay, silt, organic matter, phosphorus, aluminium, aluminium saturation, cation exchange capacity, and sum of bases, whereas soils under hyperseasonal and seasonal cerrados were related to higher pH values, base saturation, calcium, magnesium, and sand. As long as the soil under both cerrados was chemically and physically similar, the duration of waterlogging in the hyperseasonal cerrado is not long enough to alter its soil characteristics. Limitations to the plants growing on the hyperseasonal cerrado soil must be a consequence of the direct effects of flooding. Since cerrado plant species are dryland ones, the hypoxia caused by waterlogging may limit the number of cerrado species able to withstand these conditions.
Annals of Forest Science | 2011
Igor Aurélio Silva; Danilo Muniz da Silva; Gustavo Henrique de Carvalho; Marco Antônio Batalha
IntroductionThe reproductive phenology of plants is expected to be influenced by climatic factors and by the phylogenetic history of the species. In savannas, the peaks of flowering and fruiting are associated with climate seasonality. However, there is still a controversy about the reproductive phenology of plants in riparian forests, a vegetation type that does not experience a severe water shortage.MethodsWe tested whether the reproductive peaks in riparian forests are different from those of the savannas. We also tested if the number of species in flower is correlated with rainfall and day length. We sought evidence of phylogenetic signals in the reproductive periods of the species.ResultsMost of species in savannas and riparian forests flowered and fruited in the wet season. The number of flowering species was positively correlated with monthly rainfall and day length. However, we did not find phylogenetic signals in the reproductive periods.ConclusionsThe phenological pattern of riparian forests was similar to that of savannas. At the community level, the reproductive periods of plants may not be under phylogenetic constraints, as observed in forests under nonseasonal climate. Sun-related variables seem to be the main cues for the reproductive phenology of plants in savannas and riparian forests.
Plant Ecology | 2009
Igor Aurélio Silva; Marco Antônio Batalha
Species co-occurrence at fine spatial scales is expected to be nonrandom in relation to species phylogenetic relatedness and functional similarity. On the one hand, closely related species that occur together and experience similar environmental conditions are likely to share phenotypic traits due to the process of environmental filtering. On the other hand, species that are too similar are unlikely to co-occur due to competitive exclusion. We surveyed a woodland cerrado, southeastern Brazil, to test whether co-occurrence in tree species shows functional or phylogenetic structuring at fine spatial scale. Searching for correlations between an index of species co-occurrence and both functional trait differences and phylogenetic distances, we provided evidence for a predominant role of environment filters in determining the co-occurrence of functionally similar tree species in cerrado. However, we did not find any effect of phylogenetic relatedness on tree species co-occurrence. We suggest that the phylogenetic relatedness of co-occurring cerrado tree species did not present a pattern, because the species functional traits were randomly distributed on the phylogeny. Thus, phylogenetic relatedness and functional similarity do not seem to limit the co-occurrence at fine spatial scale of cerrado tree species.