Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Bolis is active.

Publication


Featured researches published by Marco Bolis.


Cancer Treatment Reviews | 2014

Retinoids and breast cancer: From basic studies to the clinic and back again

Enrico Garattini; Marco Bolis; Silvio Garattini; Maddalena Fratelli; Floriana Centritto; Gabriela Paroni; Maurizio Gianni; Adriana Zanetti; Anna Pagani; James Neil Fisher; Alberto Zambelli; Mineko Terao

All-trans retinoic acid (ATRA) is the most important active metabolite of vitamin A controlling segmentation in the developing organism and the homeostasis of various tissues in the adult. ATRA as well as natural and synthetic derivatives, collectively known as retinoids, are also promising agents in the treatment and chemoprevention of different types of neoplasia including breast cancer. The major aim of the present article is to review the basic knowledge acquired on the anti-tumor activity of classic retinoids, like ATRA, in mammary tumors, focusing on the underlying cellular and molecular mechanisms and the determinants of retinoid sensitivity/resistance. In the first part, an analysis of the large number of pre-clinical studies available is provided, stressing the point that this has resulted in a limited number of clinical trials. This is followed by an overview of the knowledge acquired on the role played by the retinoid nuclear receptors in the anti-tumor responses triggered by retinoids. The body of the article emphasizes the potential of ATRA and derivatives in modulating and in being influenced by some of the most relevant cellular pathways involved in the growth and progression of breast cancer. We review the studies centering on the cross-talk between retinoids and some of the growth-factor pathways which control the homeostasis of the mammary tumor cell. In addition, we consider the cross-talk with relevant intra-cellular second messenger pathways. The information provided lays the foundation for the development of rational and retinoid-based therapeutic strategies to be used for the management of breast cancer.


Cellular and Molecular Life Sciences | 2013

Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression

Mami Kurosaki; Marco Bolis; Maddalena Fratelli; Maria Monica Barzago; Linda Pattini; Gemma Perretta; Mineko Terao; Enrico Garattini

Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.


Archives of Toxicology | 2016

Structure and function of mammalian aldehyde oxidases

Mineko Terao; Maria João Romão; Silke Leimkühler; Marco Bolis; Maddalena Fratelli; Catarina Coelho; Teresa Santos-Silva; Enrico Garattini

Abstract Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.


The Journal of Experimental Biology | 2014

The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities

Zvonimir Marelja; Miriam Dambowsky; Marco Bolis; Marina L. Georgiou; Enrico Garattini; Fanis Missirlis; Silke Leimkühler

In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1–4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Polpo) and aldehyde oxidase-1 (Aldox-1n1) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Polpo-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Polpo allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1n1 phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.


Embo Molecular Medicine | 2015

Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression

Floriana Centritto; Gabriela Paroni; Marco Bolis; Silvio Garattini; Mami Kurosaki; Maria Monica Barzago; Adriana Zanetti; James Neil Fisher; Mark Francis Scott; Linda Pattini; Monica Lupi; Paolo Ubezio; Francesca Piccotti; Alberto Zambelli; Paola Rizzo; Maurizio Gianni; Maddalena Fratelli; Mineko Terao; Enrico Garattini

Forty‐two cell lines recapitulating mammary carcinoma heterogeneity were profiled for all‐trans retinoic acid (ATRA) sensitivity. Luminal and ER+ (estrogen‐receptor‐positive) cell lines are generally sensitive to ATRA, while refractoriness/low sensitivity is associated with a Basal phenotype and HER2 positivity. Indeed, only 2 Basal cell lines (MDA‐MB157 and HCC‐1599) are highly sensitive to the retinoid. Sensitivity of HCC‐1599 cells is confirmed in xenotransplanted mice. Short‐term tissue‐slice cultures of surgical samples validate the cell‐line results and support the concept that a high proportion of Luminal/ER+ carcinomas are ATRA sensitive, while triple‐negative (Basal) and HER2‐positive tumors tend to be retinoid resistant. Pathway‐oriented analysis of the constitutive gene‐expression profiles in the cell lines identifies RARα as the member of the retinoid pathway directly associated with a Luminal phenotype, estrogen positivity and ATRA sensitivity. RARα3 is the major transcript in ATRA‐sensitive cells and tumors. Studies in selected cell lines with agonists/antagonists confirm that RARα is the principal mediator of ATRA responsiveness. RARα over‐expression sensitizes retinoid‐resistant MDA‐MB453 cells to ATRA anti‐proliferative action. Conversely, silencing of RARα in retinoid‐sensitive SKBR3 cells abrogates ATRA responsiveness. All this is paralleled by similar effects on ATRA‐dependent inhibition of cell motility, indicating that RARα may mediate also ATRA anti‐metastatic effects. We define gene sets of predictive potential which are associated with ATRA sensitivity in breast cancer cell lines and validate them in short‐term tissue cultures of Luminal/ER+ and triple‐negative tumors. In these last models, we determine the perturbations in the transcriptomic profiles afforded by ATRA. The study provides fundamental information for the development of retinoid‐based therapeutic strategies aimed at the stratified treatment of breast cancer subtypes.


Journal of Biological Chemistry | 2015

All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ).

Adriana Zanetti; Roberta Affatato; Floriana Centritto; Maddalena Fratelli; Mami Kurosaki; Maria Monica Barzago; Marco Bolis; Mineko Terao; Enrico Garattini; Gabriela Paroni

Background: All-trans-retinoic acid is a promising therapeutic agent in breast cancer. Results: All-trans-retinoic acid modulates mammary tumor cell epithelial-to-mesenchymal-transition via the TGFβ and NOTCH pathways. Conclusion: The present study unveils a new aspect of all-trans-retinoic acid activity (i.e. regulation of phenotypic cell plasticity). Significance: Our results indicate that all-trans-retinoic acid is endowed with anti-metastatic properties that could be exploited at the therapeutic level. All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway.


Scientific Reports | 2016

Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

Mineko Terao; Maria Monica Barzago; Mami Kurosaki; Maddalena Fratelli; Marco Bolis; Andrea Borsotti; Paolo Bigini; Edoardo Micotti; Mirjana Carli; Roberto W. Invernizzi; Renzo Bagnati; Alice Passoni; Roberta Pastorelli; Laura Brunelli; Ivan Toschi; Valentina Cesari; Seigo Sanoh; Enrico Garattini

Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.


Oncotarget | 2017

RARα2 and PML-RAR similarities in the control of basal and retinoic acid induced myeloid maturation of acute myeloid leukemia cells

Maurizio Gianni; Maddalena Fratelli; Marco Bolis; Mami Kurosaki; Adriana Zanetti; Gabriela Paroni; Alessandro Rambaldi; Gianmaria Borleri; Cécile Rochette-Egly; Mineko Terao; Enrico Garattini

Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) is the first example of targeted therapy. In fact, the oncogenic fusion-protein (PML-RAR) typical of this leukemia contains the retinoid-nuclear-receptor RARα. PML-RAR is responsible for the differentiation block of the leukemic blast. Besides PML-RAR, two endogenous RARα proteins are present in APL blasts, i.e. RARα1 and RARα2. We developed different cell populations characterized by PML-RAR, RARα2 and RARα1 knock-down in the APL-derived NB4 cell-line. Unexpectedly, silencing of PML-RAR and RARα2 results in similar increases in the constitutive expression of several granulocytic differentiation markers. This is accompanied by enhanced expression of the same granulocytic markers upon exposure of the NB4 blasts to ATRA. Silencing of PML-RAR and RARα2 causes also similar perturbations in the whole genome gene-expression profiles of vehicle and ATRA treated NB4 cells. Unlike PML-RAR and RARα2, RARα1 knock-down blocks ATRA-dependent induction of several granulocytic differentiation markers. Many of the effects on myeloid differentiation are confirmed by over-expression of RARα2 in NB4 cells. RARα2 action on myeloid differentiation does not require the presence of PML-RAR, as it is recapitulated also upon knock-down in PML-RAR-negative HL-60 cells. Thus, relative to RARα1, PML-RAR and RARα2 exert opposite effects on APL-cell differentiation. These contrasting actions may be related to the fact that both PML-RAR and RARα2 interact with and inhibit the transcriptional activity of RARα1. The interaction surface is located in the carboxy-terminal domain containing the D/E/F regions and it is influenced by phosphorylation of Ser-369 of RARα1.


Scientific Reports | 2017

Generation of a new mouse model of glaucoma characterized by reduced expression of the AP-2β and AP-2δ proteins

Maria Monica Barzago; Mami Kurosaki; Maddalena Fratelli; Marco Bolis; Chiara Giudice; Laura Nordio; Elisa Cerri; Luciano Domenici; Mineko Terao; Enrico Garattini

We generated 6 transgenic lines with insertion of an expression plasmid for the R883/M xanthine dehydrogenase (XDH) mutant protein. Approximately 20% of the animals deriving from one of the transgenic lines show ocular abnormalities and an increase in intra-ocular pressure which are consistent with glaucoma. The observed pathologic phenotype is not due to expression of the transgene, but rather the consequence of the transgene insertion site, which has been defined by genome sequencing. The insertion site maps to chromosome 1qA3 in close proximity to the loci encoding AP-2β and AP-2δ, two proteins expressed in the eye. The insertion leads to a reduction in AP-2β and AP-2δ levels. Down-regulation of AP-2β expression is likely to be responsible for the pathologic phenotype, as conditional deletion of the Tfap2b gene in the neural crest has recently been shown to cause defective development of the eye anterior segment and early-onset glaucoma. In these conditional knock-out and our transgenic mice, the morphological/histological features of the glaucomatous pathology are surprisingly similar. Our transgenic mouse represents a model of angle-closure glaucoma and a useful tool for the study of the pathogenesis and the development of innovative therapeutic strategies.


Scientific Reports | 2017

Endoplasmic reticulum oxidative stress triggers tgf-beta-dependent muscle dysfunction by accelerating ascorbic acid turnover

Diego Pozzer; Mariagrazia Favellato; Marco Bolis; Roberto W. Invernizzi; Francesca Solagna; Bert Blaauw; Ester Zito

Endoplasmic reticulum (ER) and oxidative stress are two related phenomena that have important metabolic consequences. As many skeletal muscle diseases are triggered by oxidative stress, we explored the chain of events linking a hyperoxidized ER (which causes ER and oxidative stress) with skeletal muscle dysfunction. An unbiased exon expression array showed that the combined genetic modulation of the two master ER redox proteins, selenoprotein N (SEPN1) and endoplasmic oxidoreductin 1 (ERO1), led to an SEPN1-related myopathic phenotype due to excessive signalling of transforming growth factor (TGF)-beta. The increased TGF-beta activity in the genetic mutants was caused by accelerated turnover of the ER localized (anti-oxidant) ascorbic acid that affected collagen deposition in the extracellular matrix. In a mouse mutant of SEPN1, which is dependent on exogenous ascorbic acid, a limited intake of ascorbic acid revealed a myopathic phenotype as a consequence of an altered TGF-beta signalling. Indeed, systemic antagonism of TGF-beta re-established skeletal muscle function in SEPN1 mutant mice. In conclusion, this study sheds new light on the molecular mechanism of SEPN1-related myopathies and indicates that the TGF-beta/ERO1/ascorbic acid axis offers potential for their treatment.

Collaboration


Dive into the Marco Bolis's collaboration.

Top Co-Authors

Avatar

Enrico Garattini

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Maddalena Fratelli

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Mineko Terao

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Mami Kurosaki

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Monica Barzago

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Maurizio Gianni

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Adriana Zanetti

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Floriana Centritto

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

James Neil Fisher

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge