Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Bugliani is active.

Publication


Featured researches published by Marco Bugliani.


Nature Genetics | 2009

Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion

Valeriya Lyssenko; Cecilia Nagorny; Michael R. Erdos; Nils Wierup; Anna Maria Jönsson; Peter Spégel; Marco Bugliani; Richa Saxena; Malin Fex; N. Pulizzi; Bo Isomaa; Tiinamaija Tuomi; Peter Nilsson; Johanna Kuusisto; Jaakko Tuomilehto; Michael Boehnke; David Altshuler; F. Sundler; Johan G. Eriksson; Anne U. Jackson; Markku Laakso; Piero Marchetti; Richard M. Watanabe; Hindrik Mulder; Leif Groop

Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in β cells in islets. Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal β cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of MTNR1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on β cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.


The EMBO Journal | 2012

DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients

Michael Volkmar; Sarah Dedeurwaerder; Daniel Andrade Da Cunha; Matladi N. Ndlovu; Matthieu Defrance; Rachel Deplus; Emilie Calonne; Ute Volkmar; Mariana Igoillo-Esteve; Najib Naamane; Silvia Del Guerra; Matilde Masini; Marco Bugliani; Piero Marchetti; Miriam Cnop; Decio L. Eizirik; François Fuks

In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non‐diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non‐diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in β‐cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.


Diabetologia | 2009

Autophagy in human type 2 diabetes pancreatic beta cells

Matilde Masini; Marco Bugliani; R Lupi; S Del Guerra; Ugo Boggi; Franco Filipponi; Lorella Marselli; Pellegrino Masiello; Piero Marchetti

Aims/hypothesisBeta cell loss contributes to type 2 diabetes, with increased apoptosis representing an underlying mechanism. Autophagy, i.e. the physiological degradation of damaged organelles and proteins, may, if altered, be associated with a distinct form of cell death. We studied several features of autophagy in beta cells from type 2 diabetic patients and assessed the role of metabolic perturbation and pharmacological intervention.MethodsPancreatic samples were obtained from organ donors and isolated islets prepared both by collagenase digestion and density gradient centrifugation. Beta cell morphology and morphometry were studied by electron microscopy. Gene expression studies were performed by quantitative RT-PCR.ResultsUsing electron microscopy, we observed more dead beta cells in diabetic (2.24 ± 0.53%) than control (0.66 ± 0.52%) samples (p < 0.01). Massive vacuole overload (suggesting altered autophagy) was associated with 1.18 ± 0.54% dead beta cells in type 2 diabetic samples and with 0.36 ± 0.26% in control samples (p < 0.05). Density volume of autophagic vacuoles and autophagosomes was significantly higher in diabetic beta cells. Unchanged gene expression of beclin-1 and ATG1 (also known as ULK1), and reduced transcription of LAMP2 and cathepsin B and D was observed in type 2 diabetic islets. Exposure of non-diabetic islets to increased NEFA concentration led to a marked increase of vacuole accumulation, together with enhanced beta cell death, which was associated with decreased LAMP2 expression. Metformin ameliorated autophagy alterations in diabetic beta cells and beta cells exposed to NEFA, a process associated with normalisation of LAMP2 expression.Conclusions/interpretationBeta cells in human type 2 diabetes have signs of altered autophagy, which may contribute to loss of beta cell mass. To preserve beta cell mass in diabetic patients, it may be necessary to target multiple cell-death pathways.


Diabetes | 2009

PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis

Fabrice Moore; Maikel L Colli; Miriam Cnop; Mariana Igoillo Esteve; Alessandra K Cardozo; Daniel Andrade Da Cunha; Marco Bugliani; Piero Marchetti; Decio L. Eizirik

OBJECTIVE The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in β-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal β-cells, besides evaluating its role in cytokine-induced signaling and β-cell apoptosis. RESEARCH DESIGN AND METHODS PTPN2 mRNA and protein expression was evaluated by real-time PCR and Western blot. Small interfering (si)RNAs were used to inhibit the expression of PTPN2 and downstream STAT1 in β-cells, allowing the assessment of cell death after cytokine treatment. RESULTS PTPN2 mRNA and protein are expressed in human islets and rat β-cells and upregulated by cytokines. Transfection with PTPN2 siRNAs inhibited basal- and cytokine-induced PTPN2 expression in rat β-cells and dispersed human islets cells. Decreased PTPN2 expression exacerbated interleukin (IL)-1β + interferon (IFN)-γ–induced β-cell apoptosis and turned IFN-γ alone into a proapoptotic signal. Inhibition of PTPN2 amplified IFN-γ–induced STAT1 phosphorylation, whereas double knockdown of both PTPN2 and STAT1 protected β-cells against cytokine-induced apoptosis, suggesting that STAT1 hyperactivation is responsible for the aggravation of cytokine-induced β-cell death in PTPN2-deficient cells. CONCLUSIONS We identified a functional role for the type 1 diabetes candidate gene PTPN2 in modulating IFN-γ signal transduction at the β-cell level. PTPN2 regulates cytokine-induced apoptosis and may thereby contribute to the pathogenesis of type 1 diabetes.


Journal of Clinical Investigation | 2013

Lipotoxicity disrupts incretin-regulated human β cell connectivity

David J. Hodson; Ryan K. Mitchell; Elisa A. Bellomo; Gao Sun; Laurent Vinet; Paolo Meda; Daliang Li; Wen Hong Li; Marco Bugliani; Piero Marchetti; Domenico Bosco; Lorenzo Piemonti; Paul Johnson; Stephen J. Hughes; Guy A. Rutter

Pancreatic β cell dysfunction is pathognomonic of type 2 diabetes mellitus (T2DM) and is driven by environmental and genetic factors. β cell responses to glucose and to incretins such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are altered in the disease state. While rodent β cells act as a coordinated syncytium to drive insulin release, this property is unexplored in human islets. In situ imaging approaches were therefore used to monitor in real time the islet dynamics underlying hormone release. We found that GLP-1 and GIP recruit a highly coordinated subnetwork of β cells that are targeted by lipotoxicity to suppress insulin secretion. Donor BMI was negatively correlated with subpopulation responses to GLP-1, suggesting that this action of incretin contributes to functional β cell mass in vivo. Conversely, exposure of mice to a high-fat diet unveiled a role for incretin in maintaining coordinated islet activity, supporting the existence of species-specific strategies to maintain normoglycemia. These findings demonstrate that β cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion and may be perturbed by diabetogenic insults to disrupt glucose homeostasis in humans.


Diabetes | 2014

RNA-sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate

Miriam Cnop; Baroj Abdulkarim; Guy Bottu; Daniel Andrade Da Cunha; Mariana Igoillo-Esteve; Matilde Masini; Jean Valéry Turatsinze; Thasso Griebel; Olatz Villate; Izortze Santin; Marco Bugliani; Laurence Ladrière; Lorella Marselli; Mark I. McCarthy; Piero Marchetti; Michael Sammeth; Decio L. Eizirik

Pancreatic β-cell dysfunction and death are central in the pathogenesis of type 2 diabetes (T2D). Saturated fatty acids cause β-cell failure and contribute to diabetes development in genetically predisposed individuals. Here we used RNA sequencing to map transcripts expressed in five palmitate-treated human islet preparations, observing 1,325 modified genes. Palmitate induced fatty acid metabolism and endoplasmic reticulum (ER) stress. Functional studies identified novel mediators of adaptive ER stress signaling. Palmitate modified genes regulating ubiquitin and proteasome function, autophagy, and apoptosis. Inhibition of autophagic flux and lysosome function contributed to lipotoxicity. Palmitate inhibited transcription factors controlling β-cell phenotype, including PAX4 and GATA6. Fifty-nine T2D candidate genes were expressed in human islets, and 11 were modified by palmitate. Palmitate modified expression of 17 splicing factors and shifted alternative splicing of 3,525 transcripts. Ingenuity Pathway Analysis of modified transcripts and genes confirmed that top changed functions related to cell death. Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of transcription factor binding sites in palmitate-modified transcripts revealed a role for PAX4, GATA, and the ER stress response regulators XBP1 and ATF6. This human islet transcriptome study identified novel mechanisms of palmitate-induced β-cell dysfunction and death. The data point to cross talk between metabolic stress and candidate genes at the β-cell level.


Nature Genetics | 2009

Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion RID A-4476-2009

Lyssenko; Clf Nagorny; Erdos; Nils Wierup; Anna Maria Jönsson; Peter Spégel; Marco Bugliani; Richa Saxena; Malin Fex; N. Pulizzi; Bo Isomaa; Tiinamaija Tuomi; Peter Nilsson; Johanna Kuusisto; Jaakko Tuomilehto; Michael Boehnke; David Altshuler; F. Sundler; Jg Eriksson; Au Jackson; Markku Laakso; Piero Marchetti; Rm Watanabe; Hindrik Mulder; Leif Groop

Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in β cells in islets. Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal β cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of MTNR1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on β cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.


Cell Metabolism | 2016

Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose

Natalie R. Johnston; Ryan K. Mitchell; Elizabeth Haythorne; Maria R. Paiva Pessoa; Francesca Semplici; Jorge Ferrer; Lorenzo Piemonti; Piero Marchetti; Marco Bugliani; Domenico Bosco; Ekaterine Berishvili; Philip Duncanson; Michael Watkinson; Johannes Broichhagen; Dirk Trauner; Guy A. Rutter; David J. Hodson

Summary The arrangement of β cells within islets of Langerhans is critical for insulin release through the generation of rhythmic activity. A privileged role for individual β cells in orchestrating these responses has long been suspected, but not directly demonstrated. We show here that the β cell population in situ is operationally heterogeneous. Mapping of islet functional architecture revealed the presence of hub cells with pacemaker properties, which remain stable over recording periods of 2 to 3 hr. Using a dual optogenetic/photopharmacological strategy, silencing of hubs abolished coordinated islet responses to glucose, whereas specific stimulation restored communication patterns. Hubs were metabolically adapted and targeted by both pro-inflammatory and glucolipotoxic insults to induce widespread β cell dysfunction. Thus, the islet is wired by hubs, whose failure may contribute to type 2 diabetes mellitus.


Diabetes-metabolism Research and Reviews | 2007

Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose.

S Del Guerra; M Grupillo; Matilde Masini; R Lupi; Marco Bugliani; S Torri; Ugo Boggi; M Del Chiaro; Fabio Vistoli; Franco Mosca; S. Del Prato; Piero Marchetti

Decreased beta‐cell mass, mainly due to apoptosis, is crucial for the development and progression of type 2 diabetes. Chronic exposure to high glucose levels is a probable underlying mechanism, whereas the role of oral anti‐diabetic agents (sulphonylureas in particular) is still unsettled.


Journal of Biological Chemistry | 2011

Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells

Veronica Dominguez; Claudio Raimondi; Sangeeta Somanath; Marco Bugliani; Merewyn K. Loder; Charlotte E. Edling; Nullin Divecha; Gabriela da Silva-Xavier; Lorella Marselli; Shanta J. Persaud; Mark D. Turner; Guy A. Rutter; Piero Marchetti; Marco Falasca; Tania Maffucci

Phosphoinositide 3-kinases (PI3Ks) are critical regulators of pancreatic β cell mass and survival, whereas their involvement in insulin secretion is more controversial. Furthermore, of the different PI3Ks, the class II isoforms were detected in β cells, although their role is still not well understood. Here we show that down-regulation of the class II PI3K isoform PI3K-C2α specifically impairs insulin granule exocytosis in rat insulinoma cells without affecting insulin content, the number of insulin granules at the plasma membrane, or the expression levels of key proteins involved in insulin secretion. Proteolysis of synaptosomal-associated protein of 25 kDa, a process involved in insulin granule exocytosis, is impaired in cells lacking PI3K-C2α. Finally, our data suggest that the mRNA for PI3K-C2α may be down-regulated in islets of Langerhans from type 2 diabetic compared with non-diabetic individuals. Our results reveal a critical role for PI3K-C2α in β cells and suggest that down-regulation of PI3K-C2α may be a feature of type 2 diabetes.

Collaboration


Dive into the Marco Bugliani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge