Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Buscaglia is active.

Publication


Featured researches published by Marco Buscaglia.


Nature Materials | 2011

Memory and topological frustration in nematic liquid crystals confined in porous materials

Takeaki Araki; Marco Buscaglia; Tommaso Bellini; Hajime Tanaka

Orientational ordering is key to functional materials with switching capability, such as nematic liquid crystals and ferromagnetic and ferroelectric materials. We explored the confinement of nematic liquid crystals in bicontinuous porous structures with smooth surfaces that locally impose normal orientational order on the liquid crystal. We find that frustration leads to a high density of topological defect lines permeating the porous structures, and that most defect lines are made stable by looping around solid portions of the confining material. Because many defect trajectories are possible, these systems are highly metastable and efficient in memorizing the alignment forced by external fields. Such memory effects have their origin in the topology of the confining surface and are maximized in a simple periodic bicontinuous cubic structure. We also show that nematic liquid crystals in random porous networks exhibit a disorder-induced slowing-down typical of glasses that originates from activated collisions and rearrangements of defect lines. Our findings offer the possibility to functionalize orientationally ordered materials through topological confinement.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right- and left-handed director twist

Giuliano Zanchetta; Fabio Giavazzi; Michi Nakata; Marco Buscaglia; Roberto Cerbino; Noel A. Clark; Tommaso Bellini

Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N∗), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N∗ phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N∗ helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N∗ handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N∗ phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described.


Journal of Molecular Biology | 2003

Kinetics of Intramolecular Contact Formation in a Denatured Protein

Marco Buscaglia; Benjamin Schuler; Lisa J. Lapidus; William A. Eaton; James Hofrichter

Quenching of the triplet state of tryptophan by cysteine has provided a new tool for measuring the rate of forming a specific intramolecular contact in disordered polypeptides. Here, we use this technique to investigate contact formation in the denatured state of CspTm, a small cold-shock protein from Thermotoga maritima, engineered to contain a single tryptophan residue (W29) and a single cysteine residue at the C terminus (C67). At all concentrations of denaturant, the decay rate of the W29 triplet of the unfolded protein is more than tenfold faster than the rate observed for the native protein ( approximately 10(4)s(-1)). Experiments on the unfolded protein without the added C-terminal cysteine residue show that this faster rate results entirely from contact quenching by C67. The quenching rate in the unfolded state by C67 increases at concentrations of denaturant that favor folding, indicating a compaction of the unfolded protein as observed previously in single-molecule Förster resonance energy transfer (FRET) experiments.


Biosensors and Bioelectronics | 2014

A fast and simple label-free immunoassay based on a smartphone.

Fabio Giavazzi; Matteo Salina; Erica Ceccarello; Andrea Ilacqua; Laura Sola; Marcella Chiari; Bice Chini; Roberto Cerbino; Tommaso Bellini; Marco Buscaglia

Despite the continuous advancements in bio-molecular detection and fluidic systems integration, the realization of portable and high performance devices for diagnostic applications still presents major difficulties, mostly because of the need to combine adequate sensitivity with low cost of production and operational simplicity and speed. In this context, we propose a compact device composed of a smartphone and a custom-designed cradle, containing only a disposable sensing cartridge, a tiny magnetic stirrer and a few passive optical components. The detection principle is the previously proposed Reflective Phantom Interface that is based on measuring the intensity of light reflected by the surface of an amorphous fluoropolymer substrate, which has a refractive index very close to that of the aqueous sample solution and hosts various antibodies immobilized within spots. The reflectivity of dozens of spots is monitored in real time by the phone׳s camera using the embedded flash LED as the illumination source. We test the performance of the combined device targeting heterologous immunoglobulins and antigens commonly used as markers for diagnoses of hepatitis B and HIV. Target concentrations as low as a few ng/ml can be rapidly and robustly determined by comparing the rate of increase of the signal after the addition of the sample with that measured after the subsequent addition of a standard solution with known concentration. The features of the proposed system enable the realization of novel handheld biosensing devices suitable for those applications where multiple targets have to be rapidly detected even without the presence of trained personnel.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Phase separation and liquid crystallization of complementary sequences in mixtures of nanoDNA oligomers

Giuliano Zanchetta; Michi Nakata; Marco Buscaglia; Tommaso Bellini; Noel A. Clark

Using optical microscopy, we have studied the phase behavior of mixtures of 12- to 22-bp-long nanoDNA oligomers. The mixtures are chosen such that only a fraction of the sample is composed of mutually complementary sequences, and hence the solutions are effectively mixtures of single-stranded and double-stranded (duplex) oligomers. When the concentrations are large enough, such mixtures phase-separate via the nucleation of duplex-rich liquid crystalline domains from an isotropic background rich in single strands. We find that the phase separation is approximately complete, thus corresponding to a spontaneous purification of duplexes from the single-strand oligos. We interpret this behavior as the combined result of the energy gain from the end-to-end stacking of duplexes and of depletion-type attractive interactions favoring the segregation of the more rigid duplexes from the flexible single strands. This form of spontaneous partitioning of complementary nDNA offers a route to purification of short duplex oligomers and, if in the presence of ligation, could provide a mode of positive feedback for the preferential synthesis of longer complementary oligomers, a mechanism of possible relevance in prebiotic environments.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Making connections between ultrafast protein folding kinetics and molecular dynamics simulations

Troy Cellmer; Marco Buscaglia; Eric R. Henry; James Hofrichter; William A. Eaton

Determining the rate of forming the truly folded conformation of ultrafast folding proteins is an important issue for both experiments and simulations. The double-norleucine mutant of the 35-residue villin subdomain is the focus of recent computer simulations with atomistic molecular dynamics because it is currently the fastest folding protein. The folding kinetics of this protein have been measured in laser temperature-jump experiments using tryptophan fluorescence as a probe of overall folding. The conclusion from the simulations, however, is that the rate determined by fluorescence is significantly larger than the rate of overall folding. We have therefore employed an independent experimental method to determine the folding rate. The decay of the tryptophan triplet-state in photoselection experiments was used to monitor the change in the unfolded population for a sequence of the villin subdomain with one amino acid difference from that of the laser temperature-jump experiments, but with almost identical equilibrium properties. Folding times obtained in a two-state analysis of the results from the two methods at denaturant concentrations varying from 1.5–6.0 M guanidinium chloride are in excellent agreement, with an average difference of only 20%. Polynomial extrapolation of all the data to zero denaturant yields a folding time of 220 (+100,-70) ns at 283 K, suggesting that under these conditions the barrier between folded and unfolded states has effectively disappeared—the so-called “downhill scenario.”


Langmuir | 2008

Liquid crystal alignment on a chiral surface: interfacial interaction with sheared DNA films.

Michi Nakata; Giuliano Zanchetta; Marco Buscaglia; Tommaso Bellini; Noel A. Clark

We explore the alignment of various achiral liquid crystals on films of aligned double-stranded helical DNA. In all cases and both for the nematic and smectic A phases, we find a distinctly chiral interfacial structure, with the mean orientation of the liquid crystal in contact with the DNA-treated surfaces chirally rotated through a substantial angle with respect to the mean DNA orientation. This rotation originates in the chirality of double-stranded DNA and depends on the liquid crystal molecular structure. We discuss the role of dipolar and hydrophobic coupling in determining the observed orientation.


Biophysical Journal | 2009

Kinetics of Contact Formation and End-to-End Distance Distributions of Swollen Disordered Peptides

Andrea Soranno; Renato Longhi; Tommaso Bellini; Marco Buscaglia

Unstructured polypeptide chains are subject to various degrees of swelling or compaction depending on the combination of solvent condition and amino acid sequence. Highly denatured proteins generally behave like random-coils with excluded volume repulsion, whereas in aqueous buffer more compact conformations have been observed for the low-populated unfolded state of globular proteins as well as for naturally disordered sequences. To quantitatively account for the different mechanisms inducing the swelling of polypeptides, we have examined three 14-residues peptides in aqueous buffer and in denaturant solutions, including the well characterized AGQ repeat as a reference and two variants, in which we have successively introduced charged side chains and removed the glycines. Quenching of the triplet state of tryptophan by close contact with cysteine has been used in conjunction with Förster resonance energy transfer to study the equilibrium and kinetic properties of the peptide chains. The experiments enable accessing end-to-end root mean-square distance, probability of end-to-end contact formation and intrachain diffusion coefficient. The data can be coherently interpreted on the basis of a simple chain model with backbone angles obtained from a library of coil segments of proteins and hard sphere repulsion at each Calpha position. In buffered water, we find that introducing charges in a glycine-rich sequence induces a mild chain swelling and a significant speed-up of the intrachain dynamics, whereas the removal of the glycines results in almost a two-fold increase of the chain volume and a drastic slowing down. In denaturants we observe a pronounced swelling of all the chains, with significant differences between the effect of urea and guanidinium chloride.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Multispot, label-free biodetection at a phantom plastic–water interface

Fabio Giavazzi; Matteo Salina; Roberto Cerbino; Mattia Bassi; Davide Prosperi; Erica Ceccarello; Laura Sola; Marco Rusnati; Marcella Chiari; Bice Chini; Tommaso Bellini; Marco Buscaglia

Recognizing and quantifying specific biomolecules in aqueous samples are constantly needed in research and diagnostic laboratories. As the typical detection procedures are rather lengthy and involve the use of labeled secondary antibodies or other agents to provide a signal, efforts have been made over the last 10 y to develop alternative label-free methods that enable direct detection. We propose and demonstrate an extremely simple, low-cost, label-free biodetector based on measuring the intensity of light reflected by the interface between a fluid sample and an amorphous fluoropolymer substrate having a refractive index very close to that of water and hosting various antibodies immobilized in spots. Under these index-matching conditions, the amount of light reflected by the interface allows straightforward quantification of the amount of antigen binding to each spot. Using antibodies targeting heterologous immunoglobulins and antigens commonly used as markers for diagnoses of hepatitis B and HIV, we demonstrate the limit of detection of a few picograms per square millimeter of surface-bound molecules. We also show that direct and real-time access to the amount of binding molecules allows the precise extrapolation of adhesion rates, from which the concentrations of antigens in solution can be estimated down to fractions of nanograms per milliliter.


Soft Matter | 2011

Topological defects of nematic liquid crystals confined in porous networks

Francesca Serra; K. C. Vishnubhatla; Marco Buscaglia; Roberto Cerbino; Roberto Osellame; Giulio Cerullo; Tommaso Bellini

We study the formation of topological defects in nematic liquid crystals confined in open bicontinuous networks produced in glass by femtosecond laser micromachining. We obtain a careful classification of the number and localisation of the defects as a function of the topological properties of the network. Our findings lead to a general formula that predicts the total topological charge in open complex networks, thus complementing the classic Stein–Gauss theorem. Our result provides a justification for the observed multistability of nematics confined in porous networks.

Collaboration


Dive into the Marco Buscaglia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michi Nakata

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Noel A. Clark

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge