Marco C. Betist
Royal Netherlands Academy of Arts and Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco C. Betist.
Nature Cell Biology | 2011
Martin Harterink; Fillip Port; Magdalena J. Lorenowicz; Ian J. McGough; Marie Silhankova; Marco C. Betist; Jan R.T. van Weering; Roy G. H. P. van Heesbeen; Teije C. Middelkoop; Konrad Basler; Peter J. Cullen; Hendrik C. Korswagen
Wnt proteins are lipid-modified glycoproteins that play a central role in development, adult tissue homeostasis and disease. Secretion of Wnt proteins is mediated by the Wnt-binding protein Wntless (Wls), which transports Wnt from the Golgi network to the cell surface for release. It has recently been shown that recycling of Wls through a retromer-dependent endosome-to-Golgi trafficking pathway is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is poorly understood. Here, we report that Wls recycling is mediated through a retromer pathway that is independent of the retromer sorting nexins SNX1–SNX2 and SNX5–SNX6. We have found that the unrelated sorting nexin, SNX3, has an evolutionarily conserved function in Wls recycling and Wnt secretion and show that SNX3 interacts directly with the cargo-selective subcomplex of the retromer to sort Wls into a morphologically distinct retrieval pathway. These results demonstrate that SNX3 is part of an alternative retromer pathway that functionally separates the retrograde transport of Wls from other retromer cargo.
Cell | 2013
Ni Ji; Teije C. Middelkoop; Remco A. Mentink; Marco C. Betist; Satto Tonegawa; Dylan Mooijman; Hendrik C. Korswagen; Alexander van Oudenaarden
Variability in gene expression contributes to phenotypic heterogeneity even in isogenic populations. Here, we used the stereotyped, Wnt signaling-dependent development of the Caenorhabditis elegans Q neuroblast to probe endogenous mechanisms that control gene expression variability. We found that the key Hox gene that orients Q neuroblast migration exhibits increased gene expression variability in mutants in which Wnt pathway activity has been perturbed. Distinct features of the gene expression distributions prompted us on a systematic search for regulatory interactions, revealing a network of interlocked positive and negative feedback loops. Interestingly, positive feedback appeared to cooperate with negative feedback to reduce variability while keeping the Hox gene expression at elevated levels. A minimal model correctly predicts the increased gene expression variability across mutants. Our results highlight the influence of gene network architecture on expression variability and implicate feedback regulation as an effective mechanism to ensure developmental robustness.
Developmental Biology | 2012
Teije C. Middelkoop; Lisa Williams; Pei-Tzu Yang; Jeroen Luchtenberg; Marco C. Betist; Ni Ji; Alexander van Oudenaarden; Cynthia Kenyon; Hendrik C. Korswagen
Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. Although several Wnt signal transduction mechanisms have been described in detail, it is still largely unknown how cells are specified to adopt such different Wnt signaling responses. Here, we have used the stereotypic migration of the C. elegans Q neuroblasts as a model to study how two initially equivalent cells are instructed to activate either β-catenin dependent or independent Wnt signaling pathways to control the migration of their descendants along the anteroposterior axis. We find that the specification of this difference in Wnt signaling response is dependent on the thrombospondin repeat containing protein MIG-21, which acts together with the netrin receptor UNC-40/DCC to control an initial left-right asymmetric polarization of the Q neuroblasts. Furthermore, we show that the direction of this polarization determines the threshold for Wnt/β-catenin signaling, with posterior polarization sensitizing for activation of this pathway. We conclude that MIG-21 and UNC-40 control the asymmetry in Wnt signaling response by restricting posterior polarization to one of the two Q neuroblasts.
Cellular Signalling | 2014
Magdalena J. Lorenowicz; Marie Macurkova; Martin Harterink; Teije C. Middelkoop; Reinoud E. A. de Groot; Marco C. Betist; Hendrik C. Korswagen
Secretion of Wnt proteins is mediated by the Wnt sorting receptor Wls, which transports Wnt from the Golgi to the cell surface for release. To maintain efficient Wnt secretion, Wls is recycled back to the trans-Golgi network (TGN) through a retromer dependent endosome to TGN retrieval pathway. It has recently been shown that this is mediated by an alternative retromer pathway in which the sorting nexin SNX3 interacts with the cargo-selective subcomplex of the retromer to sort Wls into a retrieval pathway that is morphologically distinct from the classical SNX-BAR dependent retromer pathway. Here, we investigated how sorting of Wls between the two different retromer pathways is specified. We found that when the function of the cargo-selective subcomplex of the retromer is partially disrupted, Wnt secretion can be restored by interfering with the maturation of late endosomes to lysosomes. This leads to an accumulation of Wls in late endosomes and facilitates the retrieval of Wls through a SNX-BAR dependent retromer pathway. Our results are consistent with a model in which spatial separation of the SNX3 and SNX-BAR retromer complexes along the endosomal maturation pathway as well as cargo-specific mechanisms contribute to the selective retrieval of Wls through the SNX3 retromer pathway.
Mechanisms of Development | 2001
Astrid van der Sar; Marco C. Betist; Jaco de Fockert; John Overvoorde; Danica Živković; Jeroen den Hertog
Receptor protein-tyrosine phosphatases (RPTPs) are key players in Drosophila development. To study the role of RPTPs in vertebrate development, we have cloned zebrafish (zf) RPTPs, including RPTP alpha (RPTPalpha), RPTP sigma (RPTPsigma) and LAR. These three RPTPs are broadly transcribed in early development. At 24h post fertilisation (hpf), all three genes are expressed in the nervous system in partially overlapping patterns. At 3 days post fertilisation zf-RPTPalpha and zf-LAR show similar expression patterns in the central nervous system (CNS), the pharyngeal arches, the pectoral fins and the spinal cord. Interestingly, zf-LAR is uniquely expressed in the neuromast cells, whereas zf-RPTPsigma expression is confined to the central nervous system.
BMC Developmental Biology | 2007
Gwen Soete; Marco C. Betist; Hendrik C. Korswagen
BackgroundIn C. elegans and other nematode species, body size is determined by the composition of the extracellular cuticle as well as by the nuclear DNA content of the underlying hypodermis. Mutants that are defective in these processes can exhibit either a short or a long body size phenotype. Several mutations that give a long body size (Lon) phenotype have been characterized and found to be regulated by the DBL-1/TGF-β pathway, that controls post-embryonic growth and male tail development.ResultsHere we characterize a novel gene affecting body size. lon-8 encodes a secreted product of the hypodermis that is highly conserved in Rhabditid nematodes. lon-8 regulates larval elongation as well as male tail development. In both processes, lon-8 appears to function independently of the Sma/Mab pathway. Rather, lon-8 genetically interacts with dpy-11 and dpy-18, which encode cuticle collagen modifying enzymes.ConclusionThe novel gene lon-8 encodes a secreted product of the hypodermis that controls body size and male ray morphology in C. elegans. lon-8 genetically interacts with enzymes that affect the composition of the cuticle.
Mechanisms of Development | 1998
Jos Joore; Sandra van de Water; Marco C. Betist; Adriana van den Eijnden-van Raaij; Danica Zivkovic
In this study we have investigated the role of cAMP-dependent protein kinase A (PKA) in the induction of the early mesodermal marker genes goosecoid and no tail by activin in zebrafish embryos. We show that upon treatment with activin, zebrafish blastula cells exhibit a rapid and transient increase in PKA activity. In these cells, activin rapidly induces the expression of the immediate early response genes goosecoid and no tail. Stimulation and inhibition of PKA by activin, respectively, enhances and reduces the induction of goosecoid and no tail mRNA expression. Similar effects of PKA stimulation and inhibition on the induction by activin of a 1.8 kb zebrafish goosecoid promoter construct were observed. The induction by activin of a fragment of the zebrafish goosecoid promoter that mediates an immediate early response to activin is blocked by inhibition of PKA. Activation of PKA alone has no effect in these experiments. Finally, inhibition of PKA in whole embryos by overexpression of a dominant negative regulatory subunit of PKA reduces the expression of no tail and goosecoid, whereas the expression of even-skippedl remains unaltered. Overexpression of the catalytic subunit of PKA in embryos does not affect expression of goosecoid, no tail or even-skippedl. These data show that in dissociated blastulae, PKA is required, but not sufficient for activin signalling towards induction of goosecoid and no tail. In intact zebrafish embryos, PKA contributes to induction of goosecoid and no tail, although it is not required or sufficient.
bioRxiv | 2018
Annabel Ebbing; Ábel Vértesy; Marco C. Betist; Bastiaan Spanjaard; Jan Philipp Junker; Alexander van Oudenaarden; Eugene Berezikov; Hendrik C. Korswagen
To advance our understanding of the genetic programs that drive cell and tissue specialization, it is necessary to obtain a comprehensive overview of gene expression patterns. Here, we have used RNA tomography to generate the first high-resolution, anteroposterior gene expression maps of C. elegans males and hermaphrodites. To explore these maps, we have developed computational methods for discovering region and tissue-specific genes. Moreover, by combining pattern-based analysis with differential gene expression analysis, we have found extensive sex-specific gene expression differences in the germline and sperm. We have also identified genes that are specifically expressed in the male reproductive tract, including a group of uncharacterized genes that encode small secreted proteins that are required for male fertility. We conclude that spatial gene expression maps provide a powerful resource for identifying novel tissue-specific gene functions in C. elegans. Importantly, we found that expression maps from different animals can be precisely aligned, which opens up new possibilities for transcriptome-wide comparisons of gene expression patterns.
Nature Communications | 2018
Ian J. McGough; Reinoud E. A. de Groot; Adam P. Jellett; Marco C. Betist; Katherine C. Varandas; Chris M. Danson; Kate J. Heesom; Hendrik C. Korswagen; Peter J. Cullen
Wntless transports Wnt morphogens to the cell surface and is required for Wnt secretion and morphogenic gradients formation. Recycling of endocytosed Wntless requires the sorting nexin-3 (SNX3)-retromer-dependent endosome-to-Golgi transport pathway. Here we demonstrate the essential role of SNX3-retromer assembly for Wntless transport and report that SNX3 associates with an evolutionary conserved endosome-associated membrane re-modelling complex composed of MON2, DOPEY2 and the putative aminophospholipid translocase, ATP9A. In vivo suppression of Ce-mon-2, Ce-pad-1 or Ce-tat-5 (respective MON2, DOPEY2 and ATP9A orthologues) phenocopy a loss of SNX3-retromer function, leading to enhanced lysosomal degradation of Wntless and a Wnt phenotype. Perturbed Wnt signalling is also observed upon overexpression of an ATPase-inhibited TAT-5(E246Q) mutant, suggesting a role for phospholipid flippase activity during SNX3-retromer-mediated Wntless sorting. Together, these findings provide in vitro and in vivo mechanistic details to describe SNX3-retromer-mediated transport during Wnt secretion and the formation of Wnt-morphogenic gradients.Sustained Wnt secretion requires the endosomal SNX3-retromer complex for endosome-to-trans-Golgi network transport of the internalised Wnt chaperone Wntless. Here the authors show that in both C. elegans and human cells, SNX3-retromer requires an evolutionary conserved membrane remodelling complex for Wntless sorting and Wnt secretion.
Science | 2006
Damien Coudreuse; Giulietta Roël; Marco C. Betist; Olivier Destrée; Hendrik C. Korswagen