Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Calabrò is active.

Publication


Featured researches published by Marco Calabrò.


Pharmacogenomics Journal | 2014

PPP3CC gene: a putative modulator of antidepressant response through the B-cell receptor signaling pathway.

Chiara Fabbri; Agnese Marsano; Diego Albani; A Chierchia; R Calati; Antonio Drago; Concetta Crisafulli; Marco Calabrò; Siegfried Kasper; Rupert Lanzenberger; Joseph Zohar; Alzbeta Juven-Wetzler; Daniel Souery; Stuart A. Montgomery; Julien Mendlewicz; Alessandro Serretti

Antidepressant pharmacogenetics represents a stimulating, but often discouraging field. The present study proposes a combination of several methodologies across three independent samples. Genes belonging to monoamine, neuroplasticity, circadian rhythm and transcription factor pathways were investigated in two samples (n=369 and 88) with diagnosis of major depression who were treated with antidepressants. Phenotypes were response, remission and treatment-resistant depression. Logistic regression including appropriate covariates was performed. Genes associated with outcomes were investigated in the STAR*D (Sequenced Treatment Alternatives to Relieve Depression) genome-wide study (n=1861). Top genes were further studied through a pathway analysis. In both original samples, markers associated with outcomes were concentrated in the PPP3CC gene. Other interesting findings were particularly in the HTR2A gene in one original sample and the STAR*D. The B-cell receptor signaling pathway proved to be the putative mediator of PPP3CC’s effect on antidepressant response (P=0.03). Among innovative candidates, PPP3CC, involved in the regulation of immune system and synaptic plasticity, seems promising for further investigation.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013

Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in mood disorder patients

Raffaella Calati; Concetta Crisafulli; Martina Balestri; Alessandro Serretti; Edoardo Spina; Marco Calabrò; Antonina Sidoti; Diego Albani; Isabelle Massat; Peter Höfer; Daniela Amital; Alzbeta Juven-Wetzler; Siegfried Kasper; Joseph Zohar; Daniel Souery; Stuart A. Montgomery; Julien Mendlewicz

Treatment resistant depression (TRD) is a significant clinical and public health problem. Among others, neuroplasticity and inflammatory pathways seem to play a crucial role in the pathomechanisms of antidepressant efficacy. The primary aim of this study was to investigate whether a set of single nucleotide polymorphisms (SNPs) within two genes implicated in neuroplasticity and inflammatory processes (the mitogen activated protein kinase 1, MAPK1 (rs3810608, rs6928, rs13515 and rs8136867), and the cyclic AMP responsive element binding protein 1, CREB1 (rs889895, rs6740584, rs2551922 and rs2254137)) was associated with antidepressant treatment resistance (according to two different definitions), in 285 Major Depressive Disorder (MDD) patients. As secondary aims, we investigated the genetic modulation of the same SNPs on response, remission and other clinical features both in MDD patients and in a larger sample including 82 Bipolar Disorder (BD) patients as well. All patients were screened in the context of a European multicenter project. No association between both the investigated genes and treatment resistance and response was found in MDD patients. However, considering remission, higher rates of CREB1 rs889895 GG genotype were reported in MDD patients. Moreover, MAPK1 rs8136867 AG genotype was found to be associated with remission in the whole sample (MDD and BD). Present results suggest that some genetic polymorphisms in both CREB1 and MAPK1 could be associated with treatment remission. Although further research is needed to draw more definitive conclusions, such results are intriguing since suggest a potential role of two genes implicated in neuroplasticity and inflammatory processes in symptom remission after antidepressant treatment.


Journal of Affective Disorders | 2015

Enrichment pathway analysis. The inflammatory genetic background in Bipolar Disorder

Antonio Drago; Concetta Crisafulli; Marco Calabrò; Alessandro Serretti

INTRODUCTION The pathophysiology of Bipolar Disorder (BD) is yet to be fully characterized. In the last years attention was focused on neurodevelopment or neurodegenerative events. In this context, hyper- and hypo- activation of inflammatory cascades may play a role in modulating the architecture and function of neuronal tissues. In the present paper we tested the enrichment of molecular pathways related to inflammatory cascades (IL-1, IL-2, IL-6, IL-8, TNF and INF) testing whether genes related to these systems hold more variations associated with the risk for BD than expected. METHODS ~7000 bipolar patients and controls with genome-wide data available from NIMH dataset were analyzed. SNPs were imputed, checked for quality control, pruned and tested for association (0.01<p). Fisher test was conducted to test the enrichment within the pathways and the association was permutated (10(5) times) to limit false positive findings. RESULTS As a result, IL-6, IL-8 and IFN related pathways held twice to thrice the number of expected variants associated with BD. These tests resisted the permutation analysis. LIMITATIONS The restricted number of inflammatory components included in the analysis and the lack of functional consequences for some of the SNPs analyzed may be biased; however, these choices helped the authors to lighten the statistical computational load for the analyses and at the same time included possibly hidden SNPs in linkage disequilibrium with the analyzed variations. CONCLUSIONS We bring evidence that the inflammatory cascades may be genetically varied in Bipolar patients. This genetic background may explain part of the pathophysiology of the disorder.


Pharmacogenomics Journal | 2015

Neuronal cell adhesion genes and antidepressant response in three independent samples

Chiara Fabbri; Concetta Crisafulli; David Gurwitz; J Stingl; R Calati; Diego Albani; Gianluigi Forloni; Marco Calabrò; R Martines; Siegfried Kasper; Joseph Zohar; A Juven-Wetzler; D Souery; S. Montgomery; J Mendlewicz; Giovanni de Girolamo; Alessandro Serretti

Drug-effect phenotypes in human lymphoblastoid cell lines recently allowed to identify CHL1 (cell adhesion molecule with homology to L1CAM), GAP43 (growth-associated protein 43) and ITGB3 (integrin beta 3) as new candidates for involvement in the antidepressant effect. CHL1 and ITGB3 code for adhesion molecules, while GAP43 codes for a neuron-specific cytosolic protein expressed in neuronal growth cones; all the three gene products are involved in synaptic plasticity. Sixteen polymorphisms in these genes were genotyped in two samples (n=369 and 90) with diagnosis of major depressive episode who were treated with antidepressants in a naturalistic setting. Phenotypes were response, remission and treatment-resistant depression. Logistic regression including appropriate covariates was performed. Genes associated with outcomes were investigated in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) genome-wide study (n=1861) as both individual genes and through a pathway analysis (Reactome and String databases). Gene-based analysis suggested CHL1 rs4003413, GAP43 rs283393 and rs9860828, ITGB3 rs3809865 as the top candidates due to their replication across the largest original sample and the STAR*D cohort. GAP43 molecular pathway was associated with both response and remission in the STAR*D, with ELAVL4 representing the gene with the highest percentage of single nucleotide polymorphisms (SNPs) associated with outcomes. Other promising genes emerging from the pathway analysis were ITGB1 and NRP1. The present study was the first to analyze cell adhesion genes and their molecular pathways in antidepressant response. Genes and biomarkers involved in neuronal adhesion should be considered by further studies aimed to identify predictors of antidepressant response.


Gene | 2013

FMO3 allelic variants in Sicilian and Sardinian populations: trimethylaminuria and absence of fish-like body odor.

Rosalia D'Angelo; Teresa Esposito; Marco Calabrò; Carmela Rinaldi; Renato Robledo; Bruno Varriale; Antonina Sidoti

The N-oxygenation of amines by the human flavin-containing monooxygenase (form 3) (FMO3) represents an important means for the conversion of lipophilic nucleophilic heteroatom-containing compounds into more polar and readily excreted products. In healthy individuals, virtually all Trimethylamine (TMA) are metabolized to Trimethylamine N-oxide (TMAO). Several single nucleotide polymorphisms (SNPs) of the FMO3 gene have been described and result in an enzyme with decreased or abolished functional activity for TMA N-oxygenation thus leading to TMAU, or fish-like odor syndrome. Three coding region variants, c. G472A (p.E158K) in exon 4, c. G769A (p.V257M) in exon 6, and c.A923G (p.E308G) in exon 7, are common polymorphisms identified in all population examined so far and are associated with normal or slightly reduced TMA N-oxygenation activity. However, simultaneous occurrence of 158K and 308G variants results in a more pronounced decrease in FMO3 activity. A fourth polymorphism, c. G1424A (p.G475D) in exon 9, less common in the general population, was observed in individuals suffering severe or moderate trimethylaminuria. The aim of this study was to determine the allelic and genotypic distributions of these four FMO3 variants in 528 healthy individuals collected from the Sicilian and Sardinian populations together with haplotype and linkage analyses. Finally, we present data on the genotype-phenotype correlation by ESI-MS/MS TMA/TMAO urinary determination in 158KK/308EG individuals. Variant 158K shows the same frequency in Sicilian and Sardinian populations while variant 257M was not observed in the Sardinian sampling. No significant differences were found for 308G and 475D variants among two populations. Cis-linkage between 158K and 308G was confirmed with the compound variant (158K-308G) being found in a proportion of 0.9% and 0.3% of Sicilian subjects, and 0.01% and 0.5% in Sardinian population. Urinary determination of TMA/TMAO ratio in 158KK/308EG individuals showed a considerable reduction in FMO3 activity although they do not show the classical features of trimethylaminuria as a strong body odor and breath. Our data support the conclusion that trimethylaminuria is not always accompanied by a fish-like odor, despite the coexistence in the same individual of the two variants 158K and 308G, and other factors account for the expression of that phenotype.


Gene | 2013

Identification of a novel CCM2 gene mutation in an Italian family with multiple cerebral cavernous malformations and epilepsy: a causative mutation?

Rosalia D'Angelo; Concetta Scimone; Marco Calabrò; Carla Schettino; Mario Fratta; Antonina Sidoti

Cerebral cavernous malformations (CCMs; OMIM 116860) are vascular anomalies mostly located in the central nervous system (CNS) and occasionally within the skin and retina. Main clinical manifestations are seizure, hemorrhage, recurrent headaches, focal neurological deficits and epileptic attacks. The CCMs can occur as sporadic or autosomal dominant conditions, although with incomplete penetrance and variable clinical expression. Familial CCMs were associated with causative mutations in the CCM1 [K-Rev interaction trapped 1 (KRIT1)], CCM2 (MGC4607) and CCM3 (PDCD10) genes. This study reports the identification of a previously undescribed deletion mutation in CCM2 gene exon 5, in an Italian family with multiple cerebral cavernous malformations and epilepsy. Mutation c.502_503delAG results in a frame shift causing a TGA stop codon. This truncates the mutant CCM2 gene protein, the malcavernin, to 233 amino acids, respect to 444 amino acids of the wild-type malcavernin. By using real-time RT-PCR, we have found that the mRNA resulting from two nucleotides deletion showed a 70% reduction relative to the wild-type transcript, indicating that it may be subject to a degradation mechanism such as nonsense-mediated decay (NMD).


Journal of Affective Disorders | 2016

The microtubule-associated molecular pathways may be genetically disrupted in patients with Bipolar Disorder. Insights from the molecular cascades.

Antonio Drago; Concetta Crisafulli; Antonina Sidoti; Marco Calabrò; Alessandro Serretti

Bipolar Disorder is a severe disease characterized by pathological mood swings from major depressive episodes to manic ones and vice versa. The biological underpinnings of Bipolar Disorder have yet to be defined. As a consequence, pharmacological treatments are suboptimal. In the present paper we test the hypothesis that the molecular pathways involved with the direct targets of lithium, hold significantly more genetic variations associated with BD. A molecular pathway approach finds its rationale in the polygenic nature of the disease. The pathways were tested in a sample of ∼ 7,000 patients and controls. Data are available from the public NIMH database. The definition of the pathways was conducted according to the National Cancer Institute (http://pid.nci.nih.gov/). As a result, 3 out of the 18 tested pathways related to lithium action resisted the permutation analysis and were found to be associated with BD. These pathways were related to Reelin, Integrins and Aurora. A pool of genes selected from the ones linked with the above pathways was further investigated in order to identify the fine molecular mechanics shared by our significant pathways and also their link with lithium mechanism of action. The data obtained point out to a possible involvement of microtubule-related mechanics.


Expert Opinion on Drug Metabolism & Toxicology | 2016

Progress and prospects in pharmacogenetics of antidepressant drugs

Chiara Fabbri; Concetta Crisafulli; Marco Calabrò; Edoardo Spina; Alessandro Serretti

ABSTRACT Introduction: Depression is responsible for the most part of the personal and socio-economic burden due to psychiatric disorders. Since antidepressant response clusters in families, pharmacogenetics represents a meaningful tool to provide tailored treatments and improve the prognosis of depression. Areas covered: This review aims to summarize and discuss the pharmacogenetics of antidepressant drugs in major depressive disorder, with a focus on the most replicated genes, genome-wide association studies (GWAS), but also on the findings provided by new and promising analysis methods. In particular, multimarker tests such as pathway analysis and polygenic risk scores increase the power of detecting associations compared to the analysis of individual polymorphisms. Since genetic variants are not necessarily associated with a change in protein level, gene expression studies may provide complementary information to genetic studies. Finally, the pharmacogenetic tests that have been investigated for clinical application are discussed. Expert opinion: Despite the lack of widespread clinical applications, preliminary results suggest that pharmacogenetics may be useful to guide antidepressant treatment. The US Food and Drug Administration included pharmacogenetic indications in the labeling of several antidepressants. This represented an important official recognition of the clinical relevance of genetic polymorphisms in antidepressant treatment.


Pharmacogenomics | 2015

CHL1, ITGB3 and SLC6A4 gene expression and antidepressant drug response: results from the Munich Antidepressant Response Signature (MARS) study

Kristina Probst-Schendzielorz; Catharina Scholl; Olga Efimkina; Eva Ersfeld; Roberto Viviani; Alessandro Serretti; Chiara Fabbri; David Gurwitz; Susanne Lucae; Marcus Ising; Anna Paul; Marie-Louise Lehmann; Michael Steffens; Concetta Crisafulli; Marco Calabrò; Florian Holsboer; Julia C. Stingl

AIM The identification of antidepressant drugs (ADs) response biomarkers in depression is of high clinical importance. We explored CHL1 and ITGB3 expression as tentative response biomarkers. MATERIALS & METHODS In vitro sensitivity to ADs, as well as gene expression and genetic variants of the candidate genes CHL1, ITGB3 and SLC6A4 were measured in lymphoblastoid cell lines (LCLs) of 58 depressed patients. RESULTS An association between the clinical remission of depression and the basal expression of CHL1 and ITGB3 was discovered. Individuals whose LCLs expressed higher levels of CHL1 or ITGB3 showed a significantly better remission upon AD treatment. In addition individuals with the CHL1 rs1516338 TT genotype showed a significantly better remission after 5 weeks AD treatment than those carrying a CC genotype. No association between the in vitro sensitivity of LCLs toward AD and the clinical remission could be detected. CONCLUSION CHL1 expression in patient-derived LCLs correlated with the clinical outcome. Thus, it could be a valid biomarker to predict the success of an antidepressant therapy. Original submitted 8 December 2014; Revision submitted 2 March 2015.


PLOS ONE | 2017

Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses

Janet Sultana; Marco Calabrò; Ricard Garcia-Serna; Carmen Ferrajolo; Concetta Crisafulli; Jordi Mestres; Gianluca Trifirò

Introduction Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. Aim The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. Methods A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. Results The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Conclusion Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk factors.

Collaboration


Dive into the Marco Calabrò's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Albani

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluigi Forloni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge