Marco Camarda
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Camarda.
Geochemistry Geophysics Geosystems | 2011
Cinzia Federico; Marco Camarda; Sofia De Gregorio; Sergio Gurrieri
A record of soil CO2 flux data on the lower flanks of Mt. Etna, measured from 1989 to 2008, is discussed in the framework of multidisciplinary observations, including seismicity, ground deformations, and flank instability. A huge increase in soil CO2 fluxes appears to be related to the dynamics of magma ascent in the upper portions of the volcano (0–3 km) and the intrusion of dykes along the southern rift, as mainly observed before the 1991–93 eruption. Even after the 1991–93 eruption, the recharge of the shallow/central reservoir was accompanied by a long-term increase in soil CO2 degassing mainly in the southwestern area. The 2001 eruption marked dramatic changes in the areal distribution of seismicity, the deformation pattern, and the soil CO2 degassing. Indeed, while the soil CO2 degassing showed background values in the southwestern area, it progressively increased in the eastern sector and along the Pernicana fault. This has been related to the marked sliding of the eastern flank since the 2002–03 eruption and the associated seismicity. This study provides evidence that the extent of soil CO2 degassing on the lower flanks of Mt. Etna is controlled by (1) the volume of involved magma, (2) the intrusion of dykes in the upper parts of the volcano, and (3) fault movement and seismicity. This implies that different degassing structures must be monitored simultaneously when attempting to understand the behavior of the volcano as a whole.
Water Research | 2011
Sofia De Gregorio; Marco Camarda; Manfredi Longo; Santo Cappuzzo; G. Giudice; Sergio Gurrieri
We present a new device for continuous monitoring of the concentration of CO(2) dissolved in water. The device consists of a tube made of a polymeric semi-permeable membrane connected to an infrared gas analyser (IRGA) and a pump. Several laboratory experiments were performed to set the best operating condition and test the accuracy of measurements. We used the device for performing 20 months of continuous monitoring of dissolved CO(2) concentration (DCC) in groundwater within a drainage gallery at Mt. Etna. The monitored groundwater intercepts the Pernicana Fault, along which degassing is observed related to volcano-tectonic activity. The acquired data were compared with continuous and discrete data obtained using existing methods. The measurements of DCC resulted in some period of the year well correlated with air temperature. We also found that long-term trends, as well as short-term variations, are probably linked to the dynamics of volcanic activity and/or perturbations in the local or regional stress fields.
Journal of Geophysical Research | 2016
Marco Camarda; Sofia De Gregorio; Roberto M. R. Di Martino; Rocco Favara
In seismically active areas, tectonic stress deforms and breaks the rocks of the crust. Ongoing deformation produces detectable modifications in the shallower portions of the crust, resulting in a wide variety of changes in several parameters. In this paper, we report the results of a large-scale spatial (across an area of 15,000 km2) and temporal (up to 3 years) investigation of the relationship between active crustal stress and soil CO2 flux. We deployed a network of 10 automatic stations in most of the seismically active districts of southern Italy to monitor the soil CO2 fluxes, and we used seismicity data to track crustal stress. The results of the investigation show that the CO2 flux signals varied independently in the districts with low and sporadic seismicity. Conversely, in the only district with nearly continuous seismic activity, almost all of the CO2 flux signals were well correlated with each other, and we recorded a clear synchronous sharp increase of the seismicity and signals recorded by several stations. The high spatial and temporal correlation between seismicity and gas discharge evidenced in this study prove that the crustal stress associated with the seismogenic process is able to effectively modulate the gas release in a seismically active area.
Geochemistry Geophysics Geosystems | 2009
Sofia De Gregorio; Marco Camarda; Santo Cappuzzo; Sergio Gurrieri
“An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.”
Geochemistry Geophysics Geosystems | 2017
Marco Camarda; Vincenzo Prano; Santo Cappuzzo; Sergio Gurrieri; Mariano Valenza
Air permeability is a major physical factor affecting the advective transport of a gas through the soil, and variations in this parameter can strongly influence the emission of endogenous gases from the soil to the atmosphere. In this paper, we illustrated a new and simple method for measuring in situ air permeability based on the measurement of air pressure inside a special probe inserted into the soil. The method was designed and developed primarily to study the relationship between air permeability and the soil CO2 flux in an active volcanic area. The method was used for continuous monitoring of the air permeability at two different locations on the island of Vulcano. At the same time, the values of the atmospheric pressure, temperature, rain, and volumetric water content of the soil were also acquired to investigate their effect on soil air permeability and soil CO2 flux. The results showed that during the monitoring period, soil air permeability exhibited minor variations at each site, while larger variations in the soil CO2 flux were recorded. The effect of soil air permeability on soil CO2 flux was negligible at both sites, whereas a strong dependence of soil CO2 flux on volumetric water content and on atmospheric pressure was found. Furthermore, the variation in air permeability recorded at both sites was much lower than that predicted using some well-known predictive models, showing that the relationship among different soil transport parameters is more complex in real field conditions than would be expected by semiempirical models.
Scientific Reports | 2016
Sofia De Gregorio; Marco Camarda
In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
Journal of Geophysical Research | 2006
Marco Camarda; Sergio Gurrieri; Mariano Valenza
Chemical Geology | 2012
Marco Camarda; Sofia De Gregorio; Sergio Gurrieri
Chemical Geology | 2009
Marco Camarda; Sergio Gurrieri; Mariano Valenza
Pure and Applied Geophysics | 2006
Marco Camarda; Sergio Gurrieri; Mariano Valenza