Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Caprini is active.

Publication


Featured researches published by Marco Caprini.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Attenuation of thermal nociception and hyperalgesia by VR1 blockers

Carolina García-Martínez; Marc Humet; Rosa Planells-Cases; Ana Gomis; Marco Caprini; Félix Viana; Elvira de la Peña; Francisco Sánchez-Baeza; Teresa Carbonell; Carmen De Felipe; Enrique Pérez-Payá; Carlos Belmonte; Angel Messeguer; Antonio Ferrer-Montiel

Vanilloid receptor subunit 1 (VR1) appears to play a critical role in the transduction of noxious chemical and thermal stimuli by sensory nerve endings in peripheral tissues. Thus, VR1 antagonists are useful compounds to unravel the contribution of this receptor to pain perception, as well as to induce analgesia. We have used a combinatorial approach to identify new, nonpeptidic channel blockers of VR1. Screening of a library of trimers of N-alkylglycines resulted in the identification of two molecules referred to as DD161515 {N-[2-(2-(N-methylpyrrolidinyl)ethyl]glycyl]-[N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinamide} and DD191515 {[N-[3-(N,N-diethylamino)propyl]glycyl]-[N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinamide} that selectively block VR1 channel activity with micromolar efficacy, rivaling that characteristic of vanilloid-related inhibitors. These compounds appear to be noncompetitive VR1 antagonists that recognize a receptor site distinct from that of capsaicin. Intraperitoneal administration of both trialkylglycines into mice significantly attenuated thermal nociception as measured in the hot plate test. It is noteworthy that these compounds eliminated pain and neurogenic inflammation evoked by intradermal injection of capsaicin into the animal hindpaw, as well as the thermal hyperalgesia induced by tissue irritation with nitrogen mustard. In contrast, responses to mechanical stimuli were not modified by either compound. Modulation of sensory nerve fibers excitability appears to underlie the peptoid analgesic activity. Collectively, these results indicate that blockade of VR1 activity attenuates chemical and thermal nociception and hyperalgesia, supporting the tenet that this ionotropic receptor contributes to chemical and thermal sensitivity and pain perception in vivo. These trialkylglycine-based, noncompetitive VR1 antagonists may likely be developed into analgesics to treat inflammatory pain.


Proceedings of the National Academy of Sciences of the United States of America | 2011

An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes

Valentina Benfenati; Marco Caprini; Melania Dovizio; Maria N. Mylonakou; Stefano Ferroni; Ole Petter Ottersen; Mahmood Amiry-Moghaddam

Regulatory volume decrease (RVD) is a key mechanism for volume control that serves to prevent detrimental swelling in response to hypo-osmotic stress. The molecular basis of RVD is not understood. Here we show that a complex containing aquaporin-4 (AQP4) and transient receptor potential vanilloid 4 (TRPV4) is essential for RVD in astrocytes. Astrocytes from AQP4-KO mice and astrocytes treated with TRPV4 siRNA fail to respond to hypotonic stress by increased intracellular Ca2+ and RVD. Coimmunoprecipitation and immunohistochemistry analyses show that AQP4 and TRPV4 interact and colocalize. Functional analysis of an astrocyte-derived cell line expressing TRPV4 but not AQP4 shows that RVD and intracellular Ca2+ response can be reconstituted by transfection with AQP4 but not with aquaporin-1. Our data indicate that astrocytes contain a TRPV4/AQP4 complex that constitutes a key element in the brains volume homeostasis by acting as an osmosensor that couples osmotic stress to downstream signaling cascades.


Neuroscience | 2007

Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes.

Valentina Benfenati; Mahmood Amiry-Moghaddam; Marco Caprini; Maria-Niki Mylonakou; Carmela Rapisarda; O.P. Ottersen; Stefano Ferroni

Cell-cell communication in astroglial syncytia is mediated by intracellular Ca(2+) ([Ca(2+)](i)) responses elicited by extracellular signaling molecules as well as by diverse physical and chemical stimuli. Despite the evidence that astrocytic swelling promotes [Ca(2+)](i) elevation through Ca(2+) influx, the molecular identity of the channel protein underlying this response is still elusive. Here we report that primary cultured cortical astrocytes express the transient receptor potential vanilloid-related channel 4 (TRPV 4), a Ca(2+)-permeable cation channel gated by a variety of stimuli, including cell swelling. Immunoblot and confocal microscopy analyses confirmed the presence of the channel protein and its localization in the plasma membrane. TRPV4 was functional because the selective TRPV4 agonist 4-alpha-phorbol 12,13-didecanoate (4alphaPDD) activated an outwardly rectifying cation current with biophysical and pharmacological properties that overlapped those of recombinant human TRPV4 expressed in COS cells. Moreover, 4alphaPDD and hypotonic challenge promoted [Ca(2+)](i) elevation mediated by influx of extracellular Ca(2+). This effect was abolished by low micromolar concentration of the TRPV4 inhibitor Ruthenium Red. Immunofluorescence and immunogold electron microscopy of rat brain revealed that TRPV4 was enriched in astrocytic processes of the superficial layers of the neocortex and in astrocyte end feet facing pia and blood vessels. Collectively, these data indicate that cultured cortical astroglia express functional TRPV4 channels. They also demonstrate that TRPV4 is particularly abundant in astrocytic membranes at the interface between brain and extracerebral liquid spaces. Consistent with its roles in other tissues, these results support the view that TRPV4 might participate in astroglial osmosensation and thus play a key role in brain volume homeostasis.


Channels | 2009

Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia.

Valentina Benfenati; Marco Caprini; Grazia Paola Nicchia; Andrea Rossi; Melania Dovizio; Chiara Cervetto; Mario Nobile; Stefano Ferroni

Accumulating evidence indicate that the gap-junction inhibitor carbenoxolone (CBX) regulates neuronal synchronization, depresses epileptiform activity and has a neuroprotective action. These CBX effects do not depend solely on its ability to inhibit gap junction channels formed by connexins (Cx), but the underlying mechanisms remain to be elucidated. Here we addressed the questions whether CBX modulates volume-regulated anion channels (VRAC) involved in the regulatory volume decrease and regulates the associated release of excitatory amino acids in cultured rat cortical astrocytes. We found that CBX inhibits VRAC conductance with potency comparable to that able to depress the activity of the most abundant astroglial gap junction protein connexin43 (Cx43). However, the knock down of Cx43 with small interfering RNA (siRNA) oligonucleotides and the use of various pharmacological tools revealed that VRAC inhibition was not mediated by interaction of CBX with astroglial Cx proteins. Comparative experiments in HEK293 cells stably expressing another putative target of CBX, the purinergic ionotropic receptor P2X7, indicate that the presence of this receptor was not necessary for CBX-mediated depression of VRAC. Finally, we show that in COS-7 cells, which are not endowed with pannexin-1 protein, another astroglial plasma membrane interactor of CBX, VRAC current retained its sensitivity to CBX. Complementary analyses indicate that the VRAC-mediated release of excitatory amino acid aspartate was decreased by CBX. Collectively, these findings support the notion that CBX could affect astroglial ability to modulate neuronal activity by suppressing excitatory amino acid release through VRAC. They also provide a possible mechanistic clue for the neuroprotective effect of CBX in vivo.


PLOS ONE | 2014

Pain Related Channels Are Differentially Expressed in Neuronal and Non-Neuronal Cells of Glabrous Skin of Fabry Knockout Male Mice

Jarmila Lakomá; Roberto Rimondini; Vincenzo Donadio; Rocco Liguori; Marco Caprini

Fabry disease (FD) is one of the X-linked lysosomal storage disorders caused by deficient functioning of the alpha-galactosidase A (α-GalA) enzyme. The α-GalA deficiency leads to multi-systemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide in the endothelium and vascular smooth muscles. A hallmark symptom of FD patients is peripheral pain that appears in the early stage of the disease. Pain in FD patients is a peripheral small-fiber idiopathic neuropathy, with intra-epidermal fiber density and integrity being used for diagnosing FD in humans. However, the molecular correlates underlying pain sensation in FD remain elusive. Here, we have employed the α-GalA gene KO mouse as a model of FD in rodents to investigate molecular changes in their peripheral nervous system that may account for their algesic symptoms. The α-GalA null mice display neuropathic pain as evidenced by thermal hyperalgesia and mechanical allodynia, with histological analyses showing alterations in cutaneous innervation. Additionally, KO mice showed a decreased and scattered pattern of neuronal terminations consistent with the reduction in neuronal terminations in skin biopsies of patients with small fiber neuropathies. At the molecular level KO animals showed an increase in the expression of TRPV1 and Nav1.8, and a decrease in the expression of TRPM8. Notably, these alterations are observed in young animals. Taken together, our findings imply that the α-GalA KO mouse is a good model in which to study the peripheral small fiber neuropathy exhibited by FD patients, and provides molecular evidence for a hyperexcitability of small nociceptors in FD.


British Journal of Pharmacology | 2013

The inhibitor of volume‐regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes

Laura Minieri; Helena Pivonkova; Marco Caprini; Lenka Harantova; Miroslava Anderova; Stefano Ferroni

The ethacrynic acid derivative, 4‐(2‐butyl‐6,7‐dichlor‐2‐cyclopentylindan‐1‐on‐5‐yl) oxobutyric acid (DCPIB) is considered to be a specific and potent inhibitor of volume‐regulated anion channels (VRACs). In the CNS, DCPIB was shown to be neuroprotective through mechanisms principally associated to its action on VRACs. We hypothesized that DCPIB could also regulate the activity of other astroglial channels involved in cell volume homeostasis.


Journal of Neurochemistry | 2006

Guanosine promotes the up-regulation of inward rectifier potassium current mediated by Kir4.1 in cultured rat cortical astrocytes

Valentina Benfenati; Marco Caprini; Mario Nobile; Carmela Rapisarda; Stefano Ferroni

Guanosine (Guo) is an endogenous neuroprotective molecule of the CNS, which has various acute and long‐term effects on both neurones and astroglial cells. Whether Guo also modulates the activity/expression of ion channels involved in homeostatic control of extracellular potassium by the astrocytic syncytium is still unknown. Here we provide electrophysiological evidence that chronic exposure (48u2003h) to Guo (500u2003μm) promotes the functional expression of an inward rectifier K+ (Kir) conductance in primary cultured rat cortical astrocytes. Molecular screening indicated that Guo promotes the up‐regulation of the Kir4.1 channel, the major component of the Kir current in astroglia in vivo. Furthermore, the properties of astrocytic Kir current overlapped those of the recombinant Kir4.1 channel expressed in a heterologous system, strongly suggesting that the Guo‐induced Kir conductance is mainly gated by Kir4.1. In contrast, the expression levels of two other Kir channel proteins were either unchanged (Kir2.1) or decreased (Kir5.1). Finally, we showed that inhibition of translational process, but not depression of transcription, prevents the Guo‐induced up‐regulation of Kir4.1, indicating that this nucleoside acts through de novo protein synthesis. Because accumulating data indicate that down‐regulation of astroglial Kir current contributes to the pathogenesis of neurodegenerative diseases associated with dysregulation of extracellular K+ homeostasis, these results support the notion that Guo might be a molecule of therapeutic interest for counteracting the detrimental effect of K+‐buffering impairment of the astroglial syncytium that occurs in pathological conditions.


Neurosignals | 2013

Copper-Zinc Superoxide Dismutase (SOD1) Is Released by Microglial Cells and Confers Neuroprotection against 6-OHDA Neurotoxicity

Elisabetta Polazzi; Ilaria Mengoni; Marco Caprini; Emiliano Peña-Altamira; Ewelina Kurtys; Barbara Monti

Microglial-neuronal interactions are essential for brain physiopathology. In this framework, recent data have changed the concept of microglia from essentially macrophagic cells to crucial elements in maintaining neuronal homeostasis and function through the release of neuroprotective molecules. Using proteomic analysis, here we identify copper-zinc superoxide dismutase (SOD1) as a protein produced and released by cultured rat primary microglia. Evidence for a neuroprotective role of microglia-derived SOD1 resulted from experiments in which primary cerebellar granule neurons (CGNs) were exposed to the dopaminergic toxin 6-hydroxydopamine (6-OHDA). Microglial conditioned medium, in which SOD1 had accumulated, protected CGNs from degeneration, and neuroprotection was abrogated by SOD1 inhibitors. These effects were replicated when exogenous SOD1 was added to a nonconditioned medium. SOD1 neuroprotective action was mediated by increased cell calcium from an external source. Further experiments demonstrated the specificity of SOD1 neuroprotection against 6-OHDA compared to other types of neurotoxic challenges. SOD1, constitutively produced and released by microglia through a lysosomal secretory pathway, is identified here for the first time as an essential component of neuroprotection mediated by microglia. This novel information is relevant to stimulating further studies of microglia-mediated neuroprotection in in vivo models of neurodegenerative diseases.


Neuroscience | 2000

pH modulation of an inward rectifier chloride current in cultured rat cortical astrocytes

Stefano Ferroni; Mario Nobile; Marco Caprini; Carmela Rapisarda

The effects of changes in extra- and intracellular pH in the pathophysiological range (6.0-8.0) on astroglial plasma membrane ionic currents were investigated with the whole-cell patch-clamp technique. In cultured rat neocortical type-1 astrocytes differentiated by a long-term treatment with dibutyryl cyclic-AMP, exposure to an extracellular pH of 6.4 induced, as compared with the control extracellular pH at 7.3, a sustained and reversible increase in the holding current at -60mV. The rise in current was accompanied by a decrease in the apparent input resistance. Ion substitution experiments indicated that extracellular pH 6.4 upregulated the resting Cl(-) conductance, whereas an opposite effect could be observed at extracellular pH 8.0. Recordings of isolated Cl(-) currents showed that this modulation occurred on the previously identified hyperpolarization-activated, inwardly rectifying Cl(-) current, I(Clh). Extracellular acidification to pH 6.4 shifted the voltage dependence of I(Clh) activation by approximately 20mV towards more positive potentials, whereas a approximately 20mV opposite shift was observed upon exposure to extracellular pH 8.0. These effects were paralleled by an increase (extracellular pH 6.4) or decrease (extracellular pH 8.0) in the maximal conductance. Decreasing (6.0) or increasing (8.0) the intracellular pH shifted the steady-state activation of I(Clh) towards more negative or positive potentials, respectively, leaving unchanged the current sensitivity to extracellular pH modifications. The modulation of the inward rectifier Cl(-) current expressed by differentiated cultured neocortical astrocytes indicates that extra- and intracellular changes in pH occurring in a pathophysiological range may contribute to regulating Cl(-) accumulation in astroglial cells.


Glia | 2009

The endocannabinoid anandamide inhibits potassium conductance in rat cortical astrocytes

M. Vignali; Valentina Benfenati; Marco Caprini; Miroslava Anderova; Mario Nobile; Stefano Ferroni

Endocannabinoids are a family of endogenous signaling molecules that modulate neuronal excitability in the central nervous system (CNS) by interacting with cannabinoid (CB) receptors. In spite of the evidence that astroglial cells also possess CB receptors, there is no information on the role of endocannabinoids in regulating CNS function through the modulation of ion channel‐mediated homeostatic mechanisms in astroglial cells. We provide electrophysiological evidence that the two brain endocannabinoids anandamide (AEA) and 2‐arachidonylglycerol (2‐AG) markedly depress outward conductance mediated by delayed outward rectifier potassium current (IKDR) in primary cultured rat cortical astrocytes. Pharmacological experiments suggest that the effect of AEA does not result from the activation of known CB receptors. Moreover, neither the production of AEA metabolites nor variations in free cytosolic calcium are involved in the negative modulation of IKDR. We show that the action of AEA is mediated by its interaction with the extracellular leaflet of the plasma membrane. Similar experiments performed in situ in cortical slices indicate that AEA downregulates IKDR in complex and passive astroglial cells. Moreover, IKDR is also inhibited by AEA in NG2 glia. Collectively, these results support the notion that endocannabinoids may exert their modulation of CNS function via the regulation of homeostatic function of the astroglial syncytium mediated by ion channel activity.

Collaboration


Dive into the Marco Caprini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Muccini

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Assunta Pistone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

R. Zamboni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Sagnella

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Simone Bonetti

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge