Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Di Renzo is active.

Publication


Featured researches published by Marco Di Renzo.


Proceedings of the IEEE | 2014

Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation

Marco Di Renzo; Harald Haas; Ali Ghrayeb; Shinya Sugiura; Lajos Hanzo

A key challenge of future mobile communication research is to strike an attractive compromise between wireless networks area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the worlds first experimental activities in this vibrant research field.


IEEE Communications Magazine | 2011

Spatial modulation for multiple-antenna wireless systems: a survey

Marco Di Renzo; Harald Haas; Peter Grant

Multiple-antenna techniques constitute a key technology for modern wireless communications, which trade-off superior error performance and higher data rates for increased system complexity and cost. Among the many transmission principles that exploit multiple-antenna at either the transmitter, the receiver, or both, Spatial Modulation (SM) is a novel and recently proposed multiple-antenna transmission technique that can offer, with a very low system complexity, improved data rates compared to Single-Input- Single-Output (SISO) systems, and robust error performance even in correlated channel environments. SM is an entirely new modulation concept that exploits the uniqueness and randomness properties of the wireless channel for communication. This is achieved by adopting a simple but effective coding mechanism that establishes a one-to-one mapping between blocks of information bits to be transmitted and the spatial positions of the transmit-antenna in the antenna-array. In this article, we summarize the latest research achievements and outline some relevant open research issues of this recently proposed transmission technique.


IEEE Communications Magazine | 2015

Safeguarding 5G wireless communication networks using physical layer security

Nan Yang; Lifeng Wang; Giovanni Geraci; Maged Elkashlan; Jinhong Yuan; Marco Di Renzo

The fifth generation (5G) network will serve as a key enabler in meeting the continuously increasing demands for future wireless applications, including an ultra-high data rate, an ultrawide radio coverage, an ultra-large number of devices, and an ultra-low latency. This article examines security, a pivotal issue in the 5G network where wireless transmissions are inherently vulnerable to security breaches. Specifically, we focus on physical layer security, which safeguards data confidentiality by exploiting the intrinsic randomness of the communications medium and reaping the benefits offered by the disruptive technologies to 5G. Among various technologies, the three most promising ones are discussed: heterogenous networks, massive multiple-input multiple-output, and millimeter wave. On the basis of the key principles of each technology, we identify the rich opportunities and the outstanding challenges that security designers must tackle. Such an identification is expected to decisively advance the understanding of future physical layer security.


IEEE Communications Surveys and Tutorials | 2015

Design Guidelines for Spatial Modulation

Ping Yang; Marco Di Renzo; Yue Xiao; Shaoqian Li; Lajos Hanzo

A new class of low-complexity, yet energy-efficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely, the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO), has emerged. These systems are capable of exploiting the spatial dimensions (i.e., the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication while relying on a single-Radio Frequency (RF) chain. Moreover, SM may be also viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/cooperative protocol design issues, and on their meritorious variants.


IEEE Transactions on Wireless Communications | 2010

Trellis Coded Spatial Modulation

Raed Mesleh; Marco Di Renzo; Harald Haas; Peter Grant

Trellis coded modulation (TCM) is a well known scheme that reduces power requirements without any bandwidth expansion. In TCM, only certain sequences of successive constellation points are allowed (mapping by set partitioning). The novel idea in this paper is to apply the TCM concept to the antenna constellation points of spatial modulation (SM). The aim is to enhance SM performance in correlated channel conditions. SM considers the multiple transmit antennas as additional constellation points and maps a first part of a block of information bits to the transmit antenna indices. Therefore, spatial multiplexing gains are retained and spectral efficiency is boosted. The second part of the block of information bits is mapped to a complex symbol using conventional digital modulation schemes. At any particular time instant, only one antenna is active. The receiver estimates the transmitted symbol and the active antenna index and uses the two estimates to retrieve the original block of data bits. In this paper, TCM partitions the entire set of transmit antennas into sub-sets such that the spacing between antennas within a particular sub-set is maximized. The scheme is called trellis coded spatial modulation (TCSM). Tight analytical performance bounds over correlated fading channels are proposed in this paper. In addition, the performance and complexity of TCSM is compared to the performance of SM, coded V-BLAST (vertical Bell Labs layered space-time) applying near optimum sphere decoder algorithm, and Alamouti scheme combined with TCM. Also, the performance of all schemes with turbo coded modulation is presented. It is shown that under the same spectral efficiency, TCSM exhibits significant performance enhancements in the presence of realistic channel conditions such as Rician fading and spatial correlation (SC). In addition, the complexity of the proposed scheme is shown to be 80% less than the V-BLAST complexity.


IEEE Transactions on Communications | 2009

A unified framework for performance analysis of CSI-assisted cooperative communications over fading channels

Marco Di Renzo; Fabio Graziosi; Fortunato Santucci

In this Letter, we propose a comprehensive framework for performance analysis of cooperative wireless systems using Amplify and Forward (AF) relay methods. The framework relies on the Moment Generating Function (MGF-) based approach for performance analysis of communication systems over fading channels, and on some properties of the Laplace Transform, which allow to develop a single-integral relation between the MGF of a random variable and the MGF of its inverse. Moreover, a simple lower bound for Outage Probability (Pout) and Outage Capacity (OC) computation is also introduced. Numerical and simulation results are provided to substantiate the accuracy of the proposed framework.


IEEE Transactions on Vehicular Technology | 2013

Practical Implementation of Spatial Modulation

Nikola Serafimovski; Abdelhamid Younis; Raed Mesleh; Pat Chambers; Marco Di Renzo; Cheng-Xiang Wang; Peter Grant; Mark A Beach; Harald Haas

In this paper, we seek to characterize the performance of spatial modulation (SM) and spatial multiplexing (SMX) with an experimental testbed. Two National Instruments (NI) PXIe devices are used for the system testing: one for the transmitter and one for the receiver. The digital signal processing (DSP) that formats the information data in preparation for transmission is described, along with the DSP that recovers the information data. In addition, the hardware limitations of the system are also analyzed. The average bit-error ratio (ABER) of the system is validated through both theoretical analysis and simulation results for SM and SMX under the line-of-sight (LoS) channel conditions.


IEEE Transactions on Wireless Communications | 2015

Stochastic Geometry Modeling and Analysis of Multi-Tier Millimeter Wave Cellular Networks

Marco Di Renzo

In this paper, a new mathematical framework to the analysis of millimeter wave cellular networks is introduced. Its peculiarity lies in considering realistic path-loss and blockage models, which are derived from recently reported experimental data. The path-loss model accounts for different distributions of line-of-sight and non-line-of-sight propagation conditions and the blockage model includes an outage state that provides a better representation of the outage possibilities of millimeter wave communications. By modeling the locations of the base stations as points of a Poisson point process and by relying on a noise-limited approximation for typical millimeter wave network deployments, simple and exact integral as well as approximated and closed-form formulas for computing the coverage probability and the average rate are obtained. With the aid of Monte Carlo simulations, the noise-limited approximation is shown to be sufficiently accurate for typical network densities. The noise-limited approximation, however, may not be sufficiently accurate for ultra-dense network deployments and for sub-gigahertz transmission bandwidths. For these case studies, the analytical approach is generalized to take the other-cell interference into account at the cost of increasing its computational complexity. The proposed mathematical framework is applicable to cell association criteria based on the smallest path-loss and on the highest received power. It accounts for beamforming alignment errors and for multi-tier cellular network deployments. Numerical results confirm that sufficiently dense millimeter wave cellular networks are capable of outperforming micro wave cellular networks, in terms of coverage probability and average rate.


IEEE Communications Letters | 2010

Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation

Marco Di Renzo; Harald Haas

In this Letter, we show that the performance of Space Shift Keying (SSK) modulation can be improved via opportunistic power allocation methods. For analytical tractability, we focus on a 2 × 1 Multiple-Input-Multiple-Output (MIMO) system setup over correlated Rayleigh fading channels. A closed-form solution of the optimal power allocation problem is derived, and it is shown that the transmit-power of each transmit-antenna should be chosen as a function of the power imbalance ratio and correlation coefficient of the transmit-receive wireless links. Numerical results are shown to substantiate the analytical derivation and the claimed performance improvement.


IEEE Transactions on Vehicular Technology | 2013

On Transmit Diversity for Spatial Modulation MIMO: Impact of Spatial Constellation Diagram and Shaping Filters at the Transmitter

Marco Di Renzo; Harald Haas

In this paper, we contribute to the theoretical understanding, analysis, and design of spatial modulation multiple-input-multiple-output (SM-MIMO) systems for transmit diversity without channel state information at the transmitter. The contribution is threefold: 1) The achievable transmit diversity of SM-MIMO is analytically studied by analyzing the impact of various design parameters, notably spatial constellation diagram and shaping filters at the transmitter; 2) the design of SM-MIMO providing transmit diversity and maximum-likelihood (ML) optimum single-stream decoding is investigated; and 3) via Monte Carlo simulations, a comprehensive performance assessment of SM-MIMO against state-of-the-art MIMO (e.g., spatial multiplexing, orthogonal space-time block codes, Golden code, and double space-time transmit diversity) is conducted. It is shown that, for many system setups, a properly designed SM-MIMO outperforms, with lower decoding complexity, state-of-the-art MIMO. In particular, SM-MIMO is particularly useful in the downlink, where many antenna elements (with only few of them active) are available at the transmitter, and few antenna elements are available at the receiver.

Collaboration


Dive into the Marco Di Renzo's collaboration.

Top Co-Authors

Avatar

Harald Haas

University of L'Aquila

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christos V. Verikoukis

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Lu

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sinan Sinanovic

Glasgow Caledonian University

View shared research outputs
Top Co-Authors

Avatar

Xiping Wu

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge