Marco Drewes
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Drewes.
Reports on Progress in Physics | 2016
Sergey Alekhin; Wolfgang Altmannshofer; Takehiko Asaka; Brian Batell; Fedor Bezrukov; K. Bondarenko; Alexey Boyarsky; Ki-Young Choi; Cristobal Corral; Nathaniel Craig; David Curtin; Sacha Davidson; André de Gouvêa; Stefano Dell'Oro; Patrick deNiverville; P. S. Bhupal Dev; Herbi K. Dreiner; Marco Drewes; Shintaro Eijima; Rouven Essig; Anthony Fradette; Bjorn Garbrecht; Belen Gavela; Gian Francesco Giudice; Mark D. Goodsell; Dmitry Gorbunov; Stefania Gori; Christophe Grojean; Alberto Guffanti; Thomas Hambye
This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Physical Review D | 2013
Laurent Canetti; Marco Drewes; Tibor Frossard; Mikhail Shaposhnikov
We show that, leaving aside accelerated cosmic expansion, all experimental data in high energy physics that are commonly agreed to require physics beyond the Standard Model can be explained when completing the model by three right-handed neutrinos that can be searched for using present-day experimental techniques. The model that realizes this scenario is known as the Neutrino Minimal Standard Model (nu MSM). In this article we give a comprehensive summary of all known constraints in the nu MSM, along with a pedagogical introduction to the model. We present the first complete quantitative study of the parameter space of the model where no physics beyond the nu MSM is needed to simultaneously explain neutrino oscillations, dark matter, and the baryon asymmetry of the Universe. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, thus evading the constraints on sterile neutrino dark matter from structure formation and x-ray searches. This requires one to track the time evolution of left-and right-handed neutrino abundances from hot big bang initial conditions down to temperatures below the QCD scale. We find that the interplay of resonant amplifications, CP-violating flavor oscillations, scatterings, and decays leads to a number of previously unknown constraints on the sterile neutrino properties. We furthermore reanalyze bounds from past collider experiments and big bang nucleosynthesis in the face of recent evidence for a nonzero neutrino mixing angle theta(13). We combine all our results with existing constraints on dark matter properties from astrophysics and cosmology. Our results provide a guideline for future experimental searches for sterile neutrinos. A summary of the constraints on sterile neutrino masses and mixings has appeared in Canetti et al. [Phys. Rev. Lett. 110, 061801 (2013)]. In this article we provide all details of our calculations and give constraints on other model parameters.
Nuclear Physics | 2017
Marco Drewes; Bjorn Garbrecht
We study experimental and cosmological constraints on the extension of the Standard Model by three right handed neutrinos with masses between those of the pion and W boson. We combine for the first time direct, indirect and cosmological constraints in this mass range. This includes experimental constraints from neutrino oscillation data, neutrinoless double β decay, electroweak precision data, lepton universality, searches for rare lepton decays, tests of CKM unitarity and past direct searches at colliders or fixed target experiments. On the cosmological side, big bang nucleosynthesis has the most pronounced impact. Our results can be used to evaluate the discovery potential of searches for heavy neutrinos at LHCb, BELLE II, SHiP, ATLAS, CMS or a future lepton collider.
Journal of High Energy Physics | 2016
Marco Drewes; Jin U Kang
A bstractWe calculate the production rate of singlet fermions from the decay of neutral or charged scalar fields in a hot plasma. We find that there are considerable thermal corrections when the temperature of the plasma exceeds the mass of the decaying scalar. We give analytic expressions for the temperature-corrected production rates in the regime where the decay products are relativistic. We also study the regime of non-relativistic decay products numerically. Our results can be used to determine the abundance and momentum distribution of Dark Matter particles produced in scalar decays. The inclusion of thermal corrections helps to improve predictions for the free streaming of the Dark Matter particles, which is crucial to test the compatibility of a given model with cosmic structure formation. With some modifications, our results may be generalised to the production of other Dark Matter candidates in scalar decays.
Journal of High Energy Physics | 2016
Marco Drewes; Bjorn Garbrecht; Dario Gueter; Juraj Klaric
A bstractThe extension of the Standard Model by heavy right-handed neutrinos can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the Universe via leptogenesis. If the mass of the heavy neutrinos is below the electroweak scale, they may be found at the LHC, BELLE II, NA62, the proposed SHiP experiment or a future high-energy collider. In this mass range, the baryon asymmetry is generated via CP -violating oscillations of the heavy neutrinos during their production. We study the generation of the baryon asymmetry of the Universe in this scenario from first principles of non-equilibrium quantum field theory, including spectator processes and feedback effects. We eliminate several uncertainties from previous calcula-tions and find that the baryon asymmetry of the Universe can be explained with larger heavy neutrino mixing angles, increasing the chance for an experimental discovery. For the limiting cases of fast and strongly overdamped oscillations of right-handed neutrinos, the generation of the baryon asymmetry can be calculated analytically up to corrections of order one.
Journal of High Energy Physics | 2017
Marco Drewes; Bjorn Garbrecht; Dario Gueter; Juraj Klaric
A bstractHeavy neutrinos with masses below the electroweak scale can simultaneously generate the light neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. The requirement to explain these phenomena imposes constraints on the mass spectrum of the heavy neutrinos, their flavour mixing pattern and their CP properties. We first combine bounds from different experiments in the past to map the viable parameter regions in which the minimal low scale seesaw model can explain the observed neutrino oscillations, while being consistent with the negative results of past searches for physics beyond the Standard Model. We then study which additional predictions for the properties of the heavy neutrinos can be made based on the requirement to explain the observed baryon asymmetry of the universe. Finally, we comment on the perspectives to find traces of heavy neutrinos in future experimental searches at the LHC, NA62, BELLE II, T2K, SHiP or a future high energy collider, such as ILC, CEPC or FCC-ee. If any heavy neutral leptons are discovered in the future, our results can be used to assess whether these particles are indeed the common origin of the light neutrino masses and the baryon asymmetry of the universe. If the magnitude of their couplings to all Standard Model flavours can be measured individually, and if the Dirac phase in the lepton mixing matrix is determined in neutrino oscillation experiments, then all model parameters can in principle be determined from this data. This makes the low scale seesaw a fully testable model of neutrino masses and baryogenesis.
Journal of High Energy Physics | 2015
Yeuk-Kwan E. Cheung; Marco Drewes; Jin U Kang; Jong Chol Kim
A bstractScalar fields appear in many theories beyond the Standard Model of particle physics. In the early universe, they are exposed to extreme conditions, including high temperature and rapid cosmic expansion. Understanding their behavior in this environment is crucial to understand the implications for cosmology. We calculate the finite temperature effective action for the field expectation value in two particularly important cases, for damped oscillations near the ground state and for scalar fields with a flat potential. We find that the behavior in both cases can in good approximation be described by a complex valued effective potential that yields Markovian equations of motion. Near the potential minimum, we recover the solution to the well-known Langevin equation. For large field values we find a very different behavior, and our result for the damping coefficient differs from the expressions frequently used in the literature. We illustrate our results in a simple scalar model, for which we give analytic approximations for the effective potential and damping coefficient. We also provide various expressions for loop integrals at finite temperature that are useful for future calculations in other models.
Physics Letters B | 2016
Marco Drewes; Shintaro Eijima
The extension of the Standard Model by right handed neutrinos with masses in the GeV range can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. It has previously been claimed that the requirement for successful baryogenesis implies that the rate of neutrinoless double β decay in this scenario is always smaller than the standard prediction from light neutrino exchange alone. In contrast, we find that the rate for this process can also be enhanced due to a dominant contribution from heavy neutrino exchange. In a small part of the parameter space it even exceeds the current experimental limit, while the properties of the heavy neutrinos are consistent with all other experimental constraints and the observed baryon asymmetry is reproduced. This implies that neutrinoless double β decay experiments have already started to rule out part of the leptogenesis parameter space that is not constrained by any other experiment, and the lepton number violation that is responsible for the origin of baryonic matter in the universe may be observed in the near future.
arXiv: High Energy Physics - Phenomenology | 2015
Marco Drewes
In the framework of renormalisable relativistic quantum field theory, the explanation of neutrino masses necessarily requires the existence of new physical states. These new states may also be responsible for other unexplained phenomena in particle physics and cosmology. After a brief introduction, I focus on scenarios in which the neutrino masses are generated by the type-I seesaw mechanism and review the phenomenological implications of different choices of the seesaw scale.
Physics Letters B | 2014
Marco Drewes
Abstract We study the spectrum of quasiparticles in a scalar quantum field theory at high temperature. Our results indicate the existence of novel quasiparticles with purely collective origin at low momenta for some choices of the masses and coupling. Scalar fields play a prominent role in many models of cosmology, and their collective excitations could be relevant for transport phenomena in the early universe.