Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Evidente is active.

Publication


Featured researches published by Marco Evidente.


Journal of Natural Products | 2015

Gulypyrones A and B and Phomentrioloxins B and C Produced by Diaporthe gulyae, a Potential Mycoherbicide for Saffron Thistle (Carthamus lanatus).

Anna Andolfi; Angela Boari; Marco Evidente; Alessio Cimmino; Maurizio Vurro; Gavin Ash; Antonio Evidente

A virulent strain of Diaporthe gulyae, isolated from stem cankers of sunflower and known to be pathogenic to saffron thistle, has been shown to produce both known and previously undescribed metabolites when grown in either static liquid culture or a bioreactor. Together with phomentrioloxin, a phytotoxic geranylcyclohexenetriol recently isolated from a strain of Phomopsis sp., two new phytotoxic trisubstituted α-pyrones, named gulypyrones A and B (1 and 2), and two new 1,O- and 2,O-dehydro derivatives of phomentrioloxin, named phomentrioloxins B and C (3 and 4), were isolated from the liquid culture filtrates of D. gulyae. These four metabolites were characterized as 6-[(2S)2-hydroxy-1-methylpropyl]-4-methoxy-5-methylpyran-2-one (1), 6-[(1E)-3-hydroxy-1-methylpropenyl]-4-methoxy-3-methylpyran-2-one (2), 4,6-dihydroxy-5-methoxy-2-(7-methyl-3-methyleneoct-6-en-1-ynyl)cyclohex-2-enone (3), and 2,5-dihydroxy-6-methoxy-3-(7-methyl-3-methyleneoct-6-en-1-ynyl)cyclohex-3-enone (4) using spectroscopic and chemical methods. The absolute configuration of the hydroxylated secondary carbon of the 2-hydroxy-1-methylpropyl side chain at C-6 of gulypyrone A was determined as S by applying a modified Moshers method. Other well-known metabolites were also isolated including 3-nitropropionic, succinic, and p-hydroxy- and p-methylbenzoic acids, p-hydroxybenzaldehyde, and nectriapyrone. When assayed using a 5 mM concentration on punctured leaf disks of weedy and crop plants, apart from 3-nitropropionic acid (the main metabolite responsible for the strong phytotoxicity of the culture filtrate), phomentrioloxin B caused small, but clear, necrotic spots on a number of plant species, whereas gulypyrone A caused leaf necrosis on Helianthus annuus plantlets. All other compounds were weakly active or inactive.


Current Medicinal Chemistry | 2015

Sesterterpenoids with Anticancer Activity

Antonio Evidente; Alexander Kornienko; Florence Lefranc; Alessio Cimmino; Ramesh Dasari; Marco Evidente; Véronique Mathieu; Robert Kiss

Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review.


Medicinal Research Reviews | 2015

Toward a Cancer Drug of Fungal Origin

Alexander Kornienko; Antonio Evidente; Maurizio Vurro; Véronique Mathieu; Alessio Cimmino; Marco Evidente; Willem A. L. van Otterlo; Ramesh Dasari; Florence Lefranc; Robert Kiss

Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi‐derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.


Journal of Natural Products | 2016

Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by Colletotrichum higginsianum, with in Vitro Cytostatic Activity.

Alessio Cimmino; Véronique Mathieu; Marco Masi; Riccardo Baroncelli; Angela Boari; Gennaro Pescitelli; Marlène M. Ferdérin; Romana Lisy; Marco Evidente; Angela Tuzi; Maria Chiara Zonno; Alexander Kornienko; Robert Kiss; Antonio Evidente

Two new diterpenoid α-pyrones, named higginsianins A (1) and B (2), were isolated from the mycelium of the fungus Colletotrichum higginsianum grown in liquid culture. They were characterized as 3-[5a,9b-dimethyl-7-methylene-2-(2-methylpropenyl)dodecahydronaphtho[2,1-b]furan-6-ylmethyl]-4-hydroxy-5,6-dimethylpyran-2-one and 4-hydroxy-3-[6-hydroxy-5,8a-dimethyl-2-methylene-5-(4-methylpent-3-enyl)decahydronaphthalen-1-ylmethyl]-5,6-dimethylpyran-2-one, respectively, by using NMR, HRESIMS, and chemical methods. The structure and relative configuration of higginsianin A (1) were confirmed by X-ray diffractometric analysis, while its absolute configuration was assigned by electronic circular dichroism (ECD) experiments and calculations using a solid-state ECD/TDDFT method. The relative and absolute configuration of higginsianin B (2), which did not afford crystals suitable for X-ray analysis, were determined by NMR analysis and by ECD in comparison with higginsianin A. 1 and 2 were the C-8 epimers of subglutinol A and diterpenoid BR-050, respectively. The evaluation of 1 and 2 for antiproliferative activity against a panel of six cancer cell lines revealed that the IC50 values, obtained with cells reported to be sensitive to pro-apoptotic stimuli, are by more than 1 order of magnitude lower than their apoptosis-resistant counterparts (1 vs >80 μM). Finally, three hemisynthetic derivatives of 1 were prepared and evaluated for antiproliferative activity. Two of these possessed IC50 values and differential sensitivity profiles similar to those of 1.


Phytochemistry | 2015

Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album

Marco Evidente; Alessio Cimmino; Maria Chiara Zonno; Marco Masi; Alexander Berestetskyi; Ernesto Santoro; Stefano Superchi; Maurizio Vurro; Antonio Evidente

Two phytotoxins were isolated from the liquid culture of Phoma chenopodiicola, a fungal pathogen proposed for the biological control of Chenopodium album, a common worldwide weed of arable crops. The two phytotoxins appeared to be a new tetrasubstituted furopyran and a new ent-pimaradiene. From the same culture a new tetrasubstituted isocoumarin was also isolated. These compounds were characterized by using spectroscopic (essentially 1D and 2D NMR and HR ESI MS) and chemical methods as 3-(3-methoxy-2,6-dimethyl-7aH-furo[2,3-b]pyran-4-yl)-but-2-en-1-ol (chenopodolan D, 1) (1S,2S,3S,4S,5S,9R,10S,12S,13S)-1,3,12-triacetoxy-2,hydroxy-6-oxo-ent-pimara-7(8),15-dien-18-oic acid 2,18-lactone (chenopodolin B, 3), and, 4,5,7-trihydroxy-3-methyl-isochroman-1-one (chenisocoumarin, 2) The absolute configuration of chenisocoumarin was assigned by applying an advanced Moshers method through the derivatization of its secondary hydroxylated carbon C-4, while that of chenopodolan D by application of quantum mechanical calculations of chiroptical (ECD and ORD) properties. When assayed by leaf puncture against non-host weeds, chenopodolan D and chenopodolin B showed phytotoxicity while chenisocoumarin and the 9-O-acetyl derivative of chenopodolan D were inactive. These results confirm that the nature of the side chain at C-4 in chenopodolans, and in particular its hydroxylation, are important features for activity. The activity of chenopodolin B could also be explained by its possible hydrolysis to chenopodolin.


Journal of Pharmaceutical and Biomedical Analysis | 2017

Application of Mosher’s method for absolute configuration assignment to bioactive plants and fungi metabolites

Alessio Cimmino; Marco Masi; Marco Evidente; Stefano Superchi; Antonio Evidente

HIGHLIGHTSApplication of the Mosher method to plants and fungi metabolites is reviewed.Absolute configuration assignmnent to those compounds is described.The biological and pharmacological activity of those chiral metabolites is reported. ABSTRACT The review deals with the application of the NMR advanced Moshers method for the assignment of the absolute configuration to plant and fungal metabolites belonging to different classes of natural compounds. The structural and stereochemical characterization of these naturally occurring metabolites, as well as their biological properties as possible drugs or agrochemicals is reviewed. The importance of the absolute and relative stereochemistry on their biological properties is also highlighted. Successes and failures of application of the advanced Moshers method are reported.


Fitoterapia | 2016

Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells

Alessio Cimmino; Véronique Mathieu; Marco Evidente; Marlène M. Ferdérin; Laetitia Moreno Y Banuls; Marco Masi; Annelise De Carvalho; Robert Kiss; Antonio Evidente

Impatiens glandulifera has been imported from Himalaya in Europe and is considered as an invasive alien plant whose spreading arouses increasing interest among scientific literature. Via anti-cancer bioguiding, two new glucosylated steroids, named glanduliferins A and B, were isolated from the dried stem of I. glandulifera plants, together with the well-known α-spinasterol and 2-methoxy-1,4-naphthoquinone, which are also isolated from roots and leaves. They were characterized as 17-(2-hydroxy-2-pentamethylcyclopropyl-ethyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(4-O-acetyl)-α-D-glucopyranoside and 17-(4-ethyl-1,5-dimethyl-hex-2-enyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(6-O-acetyl)-β-D-glucopyranoside using various NMR and HRESIMS techniques and chemical methods. In vitro determination of the growth inhibitory activity of the four isolated compounds using the MTT colorimetric assay revealed mean IC50 growth inhibitory value of ~30 μM for glanduliferin A while glanduliferin B and α-spinasterol were poorly active till 100 μM. 2-methoxy-1,4-naphthoquinone revealed to be active in the single micromolar digit range as previously described. Quantitative videomicroscopy analyses of the effects of glanduliferins A and B suggested cytostatic rather than cytotoxic activity in U373 glioblastoma (GBM) cells.


Chirality | 2017

Amaryllidaceae alkaloids: Absolute configuration and biological activity

Alessio Cimmino; Marco Masi; Marco Evidente; Stefano Superchi; Antonio Evidente

Plants belonging to the Amaryllidaceae family are well known for their ornamental and medicinal use. Plant members of this group are distributed through both tropical and subtropical regions of the world and are dominant in Andean South America, the Mediterranean basin, and southern Africa. Amaryllidaceae plants have been demonstrated to be a good source of alkaloids with a large spectrum of biological activities, the latter being strictly related to the absolute stereochemistry of the alkaloid scaffold. Among them, great importance for practical applications in medicine has galanthamine, which has already spawned an Alzheimers prescription drug as a potent and selective inhibitor of the enzyme acetylcholinesterase. Furthermore, lycorine as well as its related isocarbostyryl analogs narciclasine and pancratistatine have shown a strong anticancer activity in vitro against different solid tumors with malignant prognosis. This review addresses the assignment of the absolute configuration of several Amaryllidaceae alkaloids and its relationship with their biological activities.


Phytochemistry | 2016

Absolute configurations of phytotoxic inuloxins B and C based on experimental and computational analysis of chiroptical properties

Marco Evidente; Ernesto Santoro; Ana G. Petrovic; Alessio Cimmino; Jun Koshoubu; Antonio Evidente; Nina Berova; Stefano Superchi

The absolute configuration of phytotoxins inuloxins B and C, produced by Inula viscosa, and with potential herbicidal activity for the management of parasitic plants, has been determined by Time-dependent density functional theory computational prediction of electronic circular dichroism and optical rotatory dispersion spectra. The inuloxin B has been converted to its 5-O-acetyl derivative, which due to its more constrained conformational features facilitated the computational analysis of its chiroptical properties. The analysis based on experimental and computed data led to assignment of absolute configuration to naturally occurring (+)-inuloxin B and (-)-inuloxin C as (7R,8R,10S,11S) and (5S,7S,8S,10S), respectively.


Pest Management Science | 2017

Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid and epi-epoformin

Eleonora Barilli; Alessio Cimmino; Marco Masi; Marco Evidente; Diego Rubiales; Antonio Evidente

BACKGROUND Rusts are a noxious group of plant diseases affecting major economically important crops. Crop protection is largely based on chemical control. There is a renewed interest in the discovery of natural products as alternatives to synthetic fungicides for control. In this study we tested two fungal metabolites, namely cyclopaldic acid and epi-epoformin, for their effectiveness in reducing early stages of development of two major rust fungi from the genera Puccinia and Uromyces, P. triticina and U. pisi. Spore germination and appressorium formation were assessed on pretreated detached leaves under controlled conditions. Cyclopaldic acid and epi-epoformin were also tested in infected plants in order to evaluate the level of control achieved by treatments both before and after inoculation. RESULTS Cyclopaldic acid and epi-epoformin were strongly effective in inhibiting fungal germination and penetration of both rust species studied. This effect was not dose dependent. These results were further confirmed in planta by spraying the metabolites on plant leaves, which reduced fungal developmental of U. pisi and P. triticina at values comparable with those obtained by application of the fungicide. CONCLUSION Our results further demonstrate the potential of fungal metabolites as natural alternatives to synthetic fungicides for the control of crop pathogens of economic importance as rusts.

Collaboration


Dive into the Marco Evidente's collaboration.

Top Co-Authors

Avatar

Alessio Cimmino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonio Evidente

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marco Masi

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Vurro

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Robert Kiss

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Véronique Mathieu

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Boari

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge