Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco G. Casarotto is active.

Publication


Featured researches published by Marco G. Casarotto.


Biophysical Journal | 1999

Activation and Inhibition of Skeletal RyR Channels by a Part of the Skeletal DHPR II-III Loop: Effects of DHPR Ser687 and FKBP12

Angela F. Dulhunty; Derek R. Laver; Esther M. Gallant; Marco G. Casarotto; Suzy M. Pace; Suzanne M. Curtis

Peptides, corresponding to sequences in the N-terminal region of the skeletal muscle dihydropyridine receptor (DHPR) II-III loop, have been tested on sarcoplasmic reticulum (SR) Ca2+ release and ryanodine receptor (RyR) activity. The peptides were: A1, Thr671-Leu690; A2, Thr671-Leu690 with Ser687 Ala substitution; NB, Gly689-Lys708 and A1S, scrambled A1 sequence. The relative rates of peptide-induced Ca2+ release from normal (FKBP12+) SR were A2 > A1 > A1S > NB. Removal of FKBP12 reduced the rate of A1-induced Ca2+ release by approximately 30%. A1 and A2 (but not NB or A1S), in the cytoplasmic (cis) solution, either activated or inhibited single FKBP12+ RyRs. Maximum activation was seen at -40 mV, with 10 microM A1 or 50 nM A2. The greatest A1-induced increase in mean current (sixfold) was seen with 100 nM cis Ca2+. Inhibition by A1 was greatest at +40 mV (or when permeant ions flowed from cytoplasm to SR lumen) with 100 microM cis Ca2+, where channel activity was almost fully inhibited. A1 did not activate FKBP12-stripped RyRs, although peptide-induced inhibition remained. The results show that peptide A activation of RyRs does not require DHPR Ser687, but required FKBP12 binding to RyRs. Peptide A must interact with different sites to activate or inhibit RyRs, because current direction-, voltage-, cis [Ca2+]-, and FKBP12-dependence of activation and inhibition differ.


Progress in Biophysics & Molecular Biology | 2002

Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle.

Angela F. Dulhunty; Claudia Haarmann; Daniel Green; Derek R. Laver; Philip G. Board; Marco G. Casarotto

Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca(2+) channels in the surface/transverse tubular membrane and ryanodine receptor Ca(2+) release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation-contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein-protein interaction remain unknown. The trigger for Ca(2+) release through ryanodine receptors in cardiac muscle is a Ca(2+) influx through the L-type Ca(2+) channel. The Ca(2+) entering through the surface membrane Ca(2+) channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Coexistence of two adamantane binding sites in the influenza A M2 ion channel

Matthew R. Rosenberg; Marco G. Casarotto

The influenza A virus contains a proton-selective ion channel (M2) that is the target of the adamantane family of drug inhibitors. Two recently published studies relating to adamantane binding of the M2 ion channel using X-ray crystallography and solution NMR have reignited interest in the potential use of adamantanes in combating the spread of influenza A. However, these two studies propose different binding sites for the adamantane drugs with the X-ray M2/amantadine structure favoring an ion channel pore-binding model and the solution NMR M2/rimantadine structure suggesting the existence of a lipid-facing binding pocket. We conducted a series of surface plasmon resonance (SPR) experiments designed to accurately measure the affinity of amantadine and rimantadine to M2 ion channels embedded in 1,2-dimyristoyl-sn-glycero-phosphocholine (DMPC) liposomes. We find that this class of drug is capable of binding M2 with two different affinities in the order of 10−4 and 10−7 M, suggesting that both proposed binding sites are feasible. Furthermore, by examining drug binding to M2 mutant constructs (V27A, S31N, and D44A), it was possible to probe the location of the two binding sites. We show that a high-affinity binding site corresponds to the M2 ion channel pore whereas the secondary, low-affinity binding site can be attributed to the lipid face of the pore. These SPR results are in excellent agreement with the most recent solid-state NMR study of amantadine-bound M2 in lipid bilayers and provide independent support that the ion channel pore-binding site is responsible for the pharmacological activity elicited by the adamantane drugs.


Cell Calcium | 2009

Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling

Takashi Kimura; John D. Lueck; Peta J. Harvey; Suzy M. Pace; Noriaki Ikemoto; Marco G. Casarotto; Robert T. Dirksen; Angela F. Dulhunty

Alternative splicing of ASI residues (Ala(3481)-Gln(3485)) in the skeletal muscle ryanodine receptor (RyR1) is developmentally regulated: the residues are present in adult ASI(+)RyR1, but absent in the juvenile ASI(-)RyR1 which is over-expressed in adult myotonic dystrophy type 1 (DM1). Although this splicing switch may influence RyR1 function in developing muscle and DM1, little is known about the properties of the splice variants. We examined excitation-contraction (EC) coupling and the structure and interactions of the ASI domain (Thr(3471)-Gly(3500)) in the splice variants. Depolarisation-dependent Ca(2+) release was enhanced by >50% in myotubes expressing ASI(-)RyR1 compared with ASI(+)RyR1, although DHPR L-type currents and SR Ca(2+) content were unaltered, while ASI(-)RyR1 channel function was actually depressed. The effect on EC coupling did not depend on changes in ASI domain secondary structure. Probing RyR1 function with peptides possessing the ASI domain sequence indicated that the domain contributes to an inhibitory module in RyR1. The action of the peptide depended on a sequence of basic residues and their alignment in an alpha-helix adjacent to the ASI splice site. This is the first evidence that the ASI residues contribute to an inhibitory module in RyR1 that influences EC coupling. Implications for development and DM1 are discussed.


The International Journal of Biochemistry & Cell Biology | 2009

A dihydropyridine receptor α1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor

Yanfang Cui; Han-Shen Tae; Nicole C. Norris; Yamuna Karunasekara; Pierre Pouliquin; Philip G. Board; Angela F. Dulhunty; Marco G. Casarotto

The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.


Biochemical Journal | 2003

The random-coil ‘C’ fragment of the dihydropyridine receptor II-III loop can activate or inhibit native skeletal ryanodine receptors

Claudia Haarmann; Daniel Green; Marco G. Casarotto; Derek R. Laver; Angela F. Dulhunty

The actions of peptide C, corresponding to (724)Glu-Pro(760) of the II-III loop of the skeletal dihydropyridine receptor, on ryanodine receptor (RyR) channels incorporated into lipid bilayers with the native sarcoplasmic reticulum membrane show that the peptide is a high-affinity activator of native skeletal RyRs at cytoplasmic concentrations of 100 nM-10 microM. In addition, we found that peptide C inhibits RyRs in a voltage-independent manner when added for longer times or at higher concentrations (up to 150 microM). Peptide C had a random-coil structure indicating that it briefly assumes a variety of structures, some of which might activate and others which might inhibit RyRs. The results suggest that RyR activation and inhibition by peptide C arise from independent stochastic processes. A rate constant of 7.5 x 10(5) s(-1).M(-1) was obtained for activation and a lower estimate for the rate constant for inhibition of 5.9 x 10(3) s(-1).M(-1). The combined actions of peptide C and peptide A (II-III loop sequence (671)Thr-Leu(690)) showed that peptide C prevented activation but not blockage of RyRs by peptide A. We suggest that the effects of peptide C indicate functional interactions between a part of the dihydropyridine receptor and the RyR. These interactions could reflect either dynamic changes that occur during excitation-contraction coupling or interactions between the proteins at rest.


Antiviral Research | 2012

Design and synthesis of pinanamine derivatives as anti-influenza A M2 ion channel inhibitors.

Xin Zhao; Yanling Jie; Matthew R. Rosenberg; Junting Wan; Shaogao Zeng; Wei Cui; Yiping Xiao; Zhiyuan Li; Zhengchao Tu; Marco G. Casarotto; Wenhui Hu

The adamantanes are a class of anti-influenza drugs that inhibit the M2 ion channel of the influenza A virus. However recently, the clinical effectiveness of these drugs has been called into question due to the emergence of adamantane-insensitive A/M2 mutants. Although we previously reported (1R,2R,3R,5S)-3-pinanamine 3 as a novel inhibitor of the wild type influenza A virus M2 protein (WT A/M2), limited inhibition was found for adamantane-resistant M2 mutants. In this study, we explored whether newly synthesized pinanamine derivatives were capable of inhibiting WT A/M2 and selected adamantane-resistant M2 mutants. Several imidazole and guanazole derivatives of pinanamine were found to inhibit WT A/M2 to a comparable degree as amantadine and one of these compounds 12 exhibits weak inhibition of A/M2-S31N mutant and it is marginally more effective in inhibiting S31NM2 than amantadine. This study provides a new insight into the structural nature of drugs required to inhibit WT A/M2 and its mutants.


Biophysical Journal | 2001

Structural determinants for activation or inhibition of ryanodine receptors by basic residues in the dihydropyridine receptor II-III loop.

Marco G. Casarotto; Daniel Green; Suzi M. Pace; Suzanne M. Curtis; Angela F. Dulhunty

The structures of peptide A, and six other 7-20 amino acid peptides corresponding to sequences in the A region (Thr671- Leu690) of the skeletal muscle dihydropyridine receptor II-III loop have been examined, and are correlated with the ability of the peptides to activate or inhibit skeletal ryanodine receptor calcium release channels. The peptides adopted either random coil or nascent helix-like structures, which depended upon the polarity of the terminal residues as well as the presence and ionisation state of two glutamate residues. Enhanced activation of Ca2+ release from sarcoplasmic reticulum, and activation of current flow through single ryanodine receptor channels (at -40 mV), was seen with peptides containing the basic residues 681Arg Lys Arg Arg Lys685, and was strongest when the residues were a part of an alpha-helix. Inhibition of channels (at +40 mV) was also seen with peptides containing the five positively charged residues, but was not enhanced in helical peptides. These results confirm the hypothesis that activation of ryanodine receptor channels by the II-III loop peptides requires both the basic residues and their participation in helical structure, and show for the first time that inhibition requires the basic residues, but is not structure-dependent. These findings imply that activation and inhibition result from peptide binding to separate sites on the ryanodine receptor.


Biochemical Journal | 2003

The three-dimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment.

Daniel Green; Suzi M. Pace; Suzanne M. Curtis; Magdalena Sakowska; Graham D. Lamb; Angela F. Dulhunty; Marco G. Casarotto

An alpha-helical II-III loop segment of the dihydropyridine receptor activates the ryanodine receptor calcium-release channel. We describe a novel manipulation in which this agonists activity is increased by modifying its surface structure to resemble that of a toxin molecule. In a unique system, native beta-sheet scorpion toxins have been reported to activate skeletal muscle ryanodine receptor calcium channels with high affinity by binding to the same site as the lower-affinity alpha-helical dihydropyridine receptor segment. We increased the alignment of basic residues in the alpha-helical peptide to mimic the spatial orientation of active residues in the scorpion toxin, with a consequent 2-20-fold increase in the activity of the alpha-helical peptide. We hypothesized that, like the native peptide, the modified peptide and the scorpion toxin may bind to a common site. This was supported by (i) similar changes in ryanodine receptor channel gating induced by the native or modified alpha-helical peptide and the beta-sheet toxin, a 10-100-fold reduction in channel closed time, with a < or = 2-fold increase in open dwell time and (ii) a failure of the toxin to further activate channels activated by the peptides. These results suggest that diverse structural scaffolds can present similar conformational surface properties to target common receptor sites.


PLOS ONE | 2011

3D Mapping of the SPRY2 Domain of Ryanodine Receptor 1 by Single-Particle Cryo-EM

Alex Perálvarez-Marín; Han-Shen Tae; Philip G. Board; Marco G. Casarotto; Angela F. Dulhunty; Montserrat Samsó

The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.

Collaboration


Dive into the Marco G. Casarotto's collaboration.

Top Co-Authors

Avatar

Angela F. Dulhunty

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Philip G. Board

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Yamuna Karunasekara

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther M. Gallant

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Nicole C. Norris

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Peta J. Harvey

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Suzanne M. Curtis

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Yanfang Cui

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Dan Liu

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge