Marco G. Paggi
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco G. Paggi.
Journal of Cellular Biochemistry | 1996
Marco G. Paggi; Alfonso Baldi; Francesco Bonetto; Antonio Giordano
Two genes, p107 and Rb2/p130, are strictly related to RB, the most investigated tumor suppressor gene, responsible for susceptibility to retinoblastoma. The products of these three genes, namely pRb, p107, and pRb2/p130 are characterized by a peculiar steric confirmation, called “pocket,” responsible for most of the functional interactions characterizing the activity of these proteins in the homeostasis of the cell cycle. The interest in these genes and proteins springs from their ability to regulate cell cycle processes negatively, being able, for example, to dramatically slow down neoplastic growth. So far, among these genes, only RB is firmly established to act as a tumor suppressor, because its lack‐of‐function is clearly involved in tumor onset and progression. It has been found deleted or mutated in most retinoblastomas and sarcomas, but its inactivation is likely to play a crucial role in other types of human cancers. The two other members of the family have been discovered more recently and are currently under extensive investigation. We review analogies and differences among the pocket protein family members, in an attempt to understand their functions in normal and cancer cells.
Journal of Immunology | 2007
Antonello Giovannetti; Marina Pierdominici; Francesca Mazzetta; Marco Marziali; Cristina Renzi; Anna Maria Mileo; Marco De Felice; Barbara Mora; Antonella Esposito; Rossella Carello; Antonio Pizzuti; Marco G. Paggi; Roberto Paganelli; Walter Malorni; Fernando Aiuti
We investigated several phenotypic and functional parameters of T cell-mediated immunity in a large series of common variable immunodeficiency (CVID) patients. We demonstrated that the vast majority of CVID patients presented multiple T cell abnormalities intimately related among them, the severity of which was reflected in a parallel loss of CD4+ naive T cells. A strong correlation between the number of CD4+ naive T cells and clinical features was observed, supporting the subgrouping of patients according to their number of naive CD4+ T lymphocytes. A reduced thymic output and disrupted CD4+ and CD8+ TCR repertoires paralleled the contraction of CD4+ naive T cell pools. The evaluation of activation markers and cytokine production indicated a strong T cell activation that was significantly related to the increased levels of T cell turnover and apoptosis. Finally, discrete genetic profiles could be demonstrated in groups of patients showing extremely diverse T cell subset composition and function. Naive CD4+ T cell levels were significantly associated with the switched memory B cell-based classification, although the concordance between the respective subgroups did not exceed 58.8%. In conclusion, our data highlight the key role played by the T cell compartment in the pathogenesis of CVID, pointing to the need to consider this aspect for classification of this disease.
Oncogene | 2002
Alfonso Baldi; Antonio De Luca; Monica Morini; Tullio Battista; Armando Felsani; Feliciano Baldi; Caterina Catricalà; Ada Amantea; Douglas M. Noonan; Adriana Albini; Pier Giorgio Natali; Daniela Lombardi; Marco G. Paggi
Differential gene expression of cell lines derived from a malignant melanoma or its autologous lymph node metastasis using cDNA arrays indicated down-regulation of PRSS11, a gene encoding the serine protease HtrA1, a homolog of the Escherichia coli protease HtrA, in the metastatic line. Stable PRSS11 overexpression in the metastatic cell line strongly inhibited proliferation, chemoinvasion and Nm23-H1 protein expression in vitro, as well as cell growth in vivo in nu/nu mice. A polyclonal anti-HtrA1 serum demonstrated a significantly higher expression in primary melanomas when compared to unrelated metastatic lesions in a human melanoma tissue array, and down-modulation of HtrA1 expression in autologous lymph node melanoma metastases in seven out of 11 cases examined. These results suggest that down-regulation of PRSS11 and HtrA1 expression may represent an indicator of melanoma progression.
Oncogene | 2006
Armando Felsani; Anna Maria Mileo; Marco G. Paggi
RB, the most investigated tumor suppressor gene, is the founder of the RB family of growth/tumor suppressors, which comprises also p107 (RBL1) and Rb2/p130 (RBL2). The protein products of these genes, pRb, p107 and pRb2/p130, respectively, are also known as ‘pocket proteins’, because they share a ‘pocket’ domain responsible for most of the functional interactions characterizing the activity of this family of cellular factors. The interest in these genes and proteins springs essentially from their ability to regulate negatively cell cycle processes and for their ability to slow down or abrogate neoplastic growth. The pocket domain of the RB family proteins is dramatically hampered in its functions by the interference of a number of proteins produced by the small DNA viruses. In the last two decades, the ‘viral hypothesis’ of cancer has received a considerable renewed impulse from the notion that small DNA viruses, such as Adenovirus, Human papillomavirus (HPV) and Polyomavirus, produce factors that can physically interact with major cellular regulators and alter their function. These viral proteins (oncoproteins) act as multifaceted molecular devices that have evolved to perform very specific tasks. Owing to these features, viral oncoproteins have been widely employed as invaluable experimental tools for the identification of several key families of regulators, particularly of the cell cycle homeostasis. Adenovirus early-region 1A (E1A) is the most widely investigated small DNA tumor virus oncoprotein, but relevant interest in human oncology is raised by the E1A-related E7 protein from transforming HPV strains and by Polyomavirus oncoproteins, particularly large and small T antigens from Simian virus 40, JC virus and BK virus.
Journal of Cellular Physiology | 2000
Daniela Lombardi; Marie−Lise Lacombe; Marco G. Paggi
Tumor suppressor genes have a pivotal role in normal cells regulating cell cycle processes negatively. Furthermore, the inhibition of cell proliferation is a crucial step in the achievement of cell differentiation. Increasing evidence suggests that the nm23 genes, initially documented as suppressors of the invasive phenotype in some cancer types, are involved in the control of normal development and differentiation. In this review, we summarize some data concerning the involvement of the nm23 genes in development and differentiation, attempting to delineate an overall view of many facets of their biological role. J. Cell. Physiol. 182:144–149, 2000.
Journal of Histochemistry and Cytochemistry | 2003
Antonio De Luca; Maria De Falco; Anna Severino; Mara Campioni; Daniele Santini; Feliciano Baldi; Marco G. Paggi; Alfonso Baldi
The human HtrA family of proteases consists of three members: HtrA1, HtrA2, and HtrA3. In bacteria, the chief role of HtrA is recognition and degradation of misfolded proteins in the periplasm, combining a dual activity of chaperone and protease. In humans, the three HtrA homologues appear to be involved in diverse functions such as cell growth, apoptosis, allergic reactions, fertilization, control of blood pressure, and blood clotting. Previous studies using RNA blot hybridization have shown that the expression of HtrA1 is ubiquitous in normal human tissues. Here we show by immunohistochemistry (IHC) that HtrA1 is widely expressed, although different tissue distributions and/or levels of expression were detected in the different tissues examined. In particular, high to medium HtrA1 expression was detected in mature layers of epidermis, in secretory breast epithelium, in liver, and in kidney tubules of cortex, in concordance with its secretory properties. Furthermore, we show a higher protein expression level in the epithelium of proliferative endometrium, in contrast to epithelium of secretory endometrium, which is almost completely negative for this protein. This suggests a possible role for HtrA1 in the modulation of tissue activity in this organ. The various expression levels in human tissues indicate several possible roles for HtrA1 in different cell types.
Oncogene | 2003
Patrizia Lavia; Anna Maria Mileo; Antonio Giordano; Marco G. Paggi
The small DNA virus proteins E1A and E1B from human Adenovirus, E6 and E7 from human papillomavirus, and large T and small T antigens from SV40, are multifaceted molecular tools that can carry out an impressive number of tasks in the host cell. These viral factors, collectively termed ‘oncoproteins’ for their ability to induce cancer, can be viewed as paradigmatic oncogenic factors which can disrupt checkpoint controls at multiple levels – they interfere with both ‘gatekeeper’ cellular functions, including major control pathways of cell cycle and apoptosis, and with ‘caretaker’ functions, thereby inducing mitotic abnormalities and increasing genomic instability. Both E1A and E7 have been recently found to interact physically with the Ran GTPase. This interaction is key in uncoupling the centrosome cycle from the cell cycle, highlighting a direct link between viral infection and the induction of genomic instability. Further expanding our current knowledge in this field will be crucial to elucidate viral strategies leading to cellular transformation and cancer progression, as well as design novel preventive or therapeutic approaches to human cancer.
Pigment Cell & Melanoma Research | 2007
Vittoria Maresca; Enrica Flori; Stefania Briganti; Arianna Mastrofrancesco; Claudia Fabbri; Anna Maria Mileo; Marco G. Paggi; Mauro Picardo
UV‐induced DNA damage can lead to melanoma, the most dangerous form of skin cancer. Understanding the mechanisms employed by melanocytes to protect against UV is therefore a key issue. In melanocytes, catalase is the main enzyme responsible for degrading hydrogen peroxide and we have previously shown that that low basal levels of catalase activity are associated with the light phototype in in vitro and ex vivo models. Here we investigate the possible correlation between its activity and melanogenesis in primary cultures of human melanocytes. We show that while the total melanin concentration is directly correlated to the level of pigmentation, the more the degree of pigmentation increased, the lower the proportion of pheomelanin present. Moreover, in human melanocytes in vitro, catalase‐specific mRNA, protein and enzymatic activity were all directly correlated with total cellular melanin content. We also observed that immediately after a peroxidative treatment, the increase in reactive oxygen species was inversely associated with pigmentation level. Darkly pigmented melanocytes therefore possess two protective strategies represented by melanins and catalase activity that are likely to act synergistically to counteract the deleterious effects of UV radiation. By contrast, lightly pigmented melanocytes possess lower levels of melanogenic and catalase activity and are therefore more susceptible to accumulate damage after UV exposition.
Experimental Dermatology | 2004
Alfonso Baldi; Daniele Santini; Patrizia Russo; Caterina Catricalà; Ada Amantea; Mauro Picardo; Fabiana Tatangelo; Gerardo Botti; Emanuele Dragonetti; Raffaele Murace; Giuseppe Tonini; Pier Giorgio Natali; Feliciano Baldi; Marco G. Paggi
Abstract: APAF‐1 plays a pivotal role in mitochondria‐dependent apoptosis, binding to cytochrome c and favoring activation of caspase‐9. It has been shown that epigenetic silencing of the APAF‐1 gene is a common event in several metastatic melanoma cells in vitro. We determined, by Western blot, variation in the level of expression of APAF‐1 in several human melanoma cell lines and, by immunohistochemistry, in a group of 106 histological samples including benign and malignant melanocytic lesions. We observed APAF‐1 down‐regulation or loss of expression in two metastatic melanoma cell lines, compared to primary melanoma cell lines. The immunohistochemical analysis revealed a significant difference in APAF‐1 staining between nevi and melanomas. In addition, we found a significant negative correlation between APAF‐1 expression level and tumor thickness and between primary melanomas and metastases. We conclude that loss of APAF‐1 expression can be considered as an indicator of malignant transformation in melanoma.
Oncogene | 2003
Marcella Macaluso; Marco G. Paggi; Antonio Giordano
Despite the clonal origin of most tumors, their tremendous heterogeneity suggests that cancer progression springs from the combined forces of both genetic and epigenetic events, which produce variant clonal populations, together with the selective pressures of the microenvironment, which promote growth and, perhaps, dissemination of variants with a specific set of characteristics. Although the importance of genetic mutations in cancer has long been recognized, the role of epigenetic events has been suggested more recently. This review focuses on the genetic and epigenetic molecular mechanisms involved in cancer onset and progression, and discusses the possibility of new strategies in the development of anticancer treatments.