Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Galasso is active.

Publication


Featured researches published by Marco Galasso.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA

Stefano Volinia; Marco Galasso; Maria Elena Sana; Timothy Wise; Jeff Palatini; Kay Huebner; Carlo M. Croce

The transition from ductal carcinoma in situ to invasive ductal carcinoma is a key event in breast cancer progression that is still not well understood. To discover the microRNAs regulating this critical transition, we used 80 biopsies from invasive ductal carcinoma, 8 from ductal carcinoma in situ, and 6 from normal breast. We selected them from a recently published deep-sequencing dataset [Farazi TA, et al. (2011) Cancer Res 71:4443–4453]. The microRNA profile established for the normal breast to ductal carcinoma in situ transition was largely maintained in the in situ to invasive ductal carcinoma transition. Nevertheless, a nine-microRNA signature was identified that differentiated invasive from in situ carcinoma. Specifically, let-7d, miR-210, and -221 were down-regulated in the in situ and up-regulated in the invasive transition, thus featuring an expression reversal along the cancer progression path. Additionally, we identified microRNAs for overall survival and time to metastasis. Five noncoding genes were associated with both prognostic signatures—miR-210, -21, -106b*, -197, and let-7i, with miR-210 the only one also involved in the invasive transition. To pinpoint critical cellular functions affected in the invasive transition, we identified the protein coding genes with inversely related profiles to miR-210: BRCA1, FANCD, FANCF, PARP1, E-cadherin, and Rb1 were all activated in the in situ and down-regulated in the invasive carcinoma. Additionally, we detected differential splicing isoforms with special features, including a truncated EGFR lacking the kinase domain and overexpressed only in ductal carcinoma in situ.


Cancer Research | 2012

miRNA Signatures Associate with Pathogenesis and Progression of Osteosarcoma

Kevin B. Jones; Zaidoun Salah; Sara Del Mare; Marco Galasso; Eugenio Gaudio; Gerard J. Nuovo; Francesca Lovat; Kimberly T. LeBlanc; Jeff Palatini; R. Lor Randall; Stefano Volinia; Gary S. Stein; Carlo M. Croce; Jane B. Lian; Rami I. Aqeilan

Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a,miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy.


PLOS Genetics | 2013

Estrogen Mediated-Activation of miR-191/425 Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on Estrogen Receptor Status

Gianpiero Di Leva; Claudia Piovan; Pierluigi Gasparini; Apollinaire Ngankeu; Cristian Taccioli; Daniel Briskin; Douglas G. Cheung; Brad Bolon; Laura Anderlucci; Hansjuerg Alder; Gerard J. Nuovo; Meng Li; Marilena V. Iorio; Marco Galasso; Santhanam Ramasamy; Guido Marcucci; Danilo Perrotti; Kimerly A. Powell; Anna Bratasz; Michela Garofalo; Kenneth P. Nephew; Carlo M. Croce

MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.


Proceedings of the National Academy of Sciences of the United States of America | 2012

miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eμ-miR-155 transgenic mouse model.

Sukhinder K. Sandhu; Stefano Volinia; Stefan Costinean; Marco Galasso; Reid Neinast; Ramasamy Santhanam; Mark R. Parthun; Danilo Perrotti; Guido Marcucci; Ramiro Garzon; Carlo M. Croce

Multiple studies have established that microRNAs (miRNAs) are involved in the initiation and progression of cancer. Notably, miR-155 is one of the most overexpressed miRNAs in several solid and hematological malignancies. Ectopic miR-155 expression in mice B cells (Eμ-miR-155 transgenic mice) has been shown to induce pre–B-cell proliferation followed by high-grade lymphoma/leukemia. Loss of miR-155 in mice resulted in impaired immunity due to defective T-cell–mediated immune response. Here we provide a mechanistic insight into miR-155–induced leukemogenesis in the Eμ-miR-155 mouse model through genome-wide transcriptome analysis of naïve B cells and target studies. We found that a key transcriptional repressor and proto-oncogene, Bcl6 is significantly down-regulated in Eμ-miR-155 mice. The reduction of Bcl6 subsequently leads to de-repression of some of the known Bcl6 targets like inhibitor of differentiation (Id2), interleukin-6 (IL6), cMyc, Cyclin D1, and Mip1α/ccl3, all of which promote cell survival and proliferation. We show that Bcl6 is indirectly regulated by miR-155 through Mxd1/Mad1 up-regulation. Interestingly, we found that miR-155 directly targets HDAC4, a corepressor partner of BCL6. Furthermore, ectopic expression of HDAC4 in human-activated B-cell–type diffuse large B-cell lymphoma (DLBCL) cells results in reduced miR-155–induced proliferation, clonogenic potential, and increased apoptosis. Meta-analysis of the diffuse large B-cell lymphoma patient microarray data showed that miR-155 expression is inversely correlated with Bcl6 and Hdac4. Hence this study provides a better understanding of how miR-155 causes disruption of the BCL6 transcriptional machinery that leads to up-regulation of the survival and proliferation genes in miR-155–induced leukemias.


Genome Medicine | 2010

Non-coding RNAs: a key to future personalized molecular therapy?

Marco Galasso; Maria Elena Sana; Stefano Volinia

Continual discoveries on non-coding RNA (ncRNA) have changed the landscape of human genetics and molecular biology. Over the past ten years it has become clear that ncRNAs are involved in many physiological cellular processes and contribute to molecular alterations in pathological conditions. Several classes of ncRNAs, such as small interfering RNAs, microRNAs, PIWI-associated RNAs, small nucleolar RNAs and transcribed ultra-conserved regions, are implicated in cancer, heart diseases, immune disorders, and neurodegenerative and metabolic diseases. ncRNAs have a fundamental role in gene regulation and, given their molecular nature, they are thus both emerging therapeutic targets and innovative intervention tools. Next-generation sequencing technologies (for example SOLiD or Genome Analyzer) are having a substantial role in the high-throughput detection of ncRNAs. Tools for non-invasive diagnostics now include monitoring body fluid concentrations of ncRNAs, and new clinical opportunities include silencing and inhibition of ncRNAs or their replacement and re-activation. Here we review recent progress on our understanding of the biological functions of human ncRNAs and their clinical potential.


Journal of the National Cancer Institute | 2014

Pluripotent Stem Cell miRNAs and Metastasis in Invasive Breast Cancer

Stefano Volinia; Gerard J. Nuovo; Alessandra Drusco; Stefan Costinean; Ramzey Abujarour; Caroline Desponts; Michela Garofalo; Raffaele Baffa; Rami Aeqilan; Kati Maharry; Maria Elena Sana Ramiro Garzon; Gianpiero Di Leva; Pierluigi Gasparini; Paola Dama; Jlenia Marchesini; Marco Galasso; Marco Manfrini; Carlotta Zerbinati; Fabio Corrà; Timothy Wise; Sylwia E. Wojcik; Maurizio Previati; Flavia Pichiorri; Nicola Zanesi; Hansjuerg Alder; Jeff Palatini; Kay Huebner; Charles L. Shapiro; Massimo Negrini; Andrea Vecchione

BACKGROUND The purpose of this study is to determine whether microRNA for pluripotent stem cells are also expressed in breast cancer and are associated with metastasis and outcome. METHODS We studied global microRNA profiles during differentiation of human embryonic stem cells (n =26) and in breast cancer patients (n = 33) and human cell lines (n = 35). Using in situ hybridization, we then investigated MIR302 expression in 318 untreated breast cancer patients (test cohort, n = 22 and validation cohort, n = 296). In parallel, using next-generation sequencing data from breast cancer patients (n = 684), we assessed microRNA association with stem cell markers. All statistical tests were two-sided. RESULTS In healthy tissues, the MIR302 (high)/MIR203 (low) asymmetry was exclusive for pluripotent stem cells. MIR302 was expressed in a small population of cancer cells within invasive ductal carcinoma, but not in normal breast (P < .001). Furthermore, MIR302 was expressed in the tumor cells together with stem cell markers, such as CD44 and BMI1. Conversely, MIR203 expression in 684 breast tumors negatively correlated with CD44 (Spearman correlation, Rho = -0.08, P = .04) and BMI1 (Rho = -0.11, P = .004), but positively correlated with differentiation marker CD24 (Rho = 0.15, P < .001). Primary tumors with lymph node metastasis had cancer cells showing scattered expression of MIR302 and widespread repression of MIR203. Finally, overall survival was statistically significantly shorter in patients with MIR302-positive cancer cells (P = .03). CONCLUSIONS In healthy tissues the MIR302(high)/MIR203(low) asymmetry was characteristic of embryonic and induced pluripotency. In invasive ductal carcinoma, the MIR302/MIR203 asymmetry was associated with stem cell markers, metastasis, and shorter survival.


Cancer Journal | 2012

MicroRNA expression signatures in solid malignancies.

Marco Galasso; Sukhinder K. Sandhu; Stefano Volinia

AbstractAn ongoing challenge in cancer research is represented by the identification of new specific clinical molecular markers and pharmacological targets. During the last 10 years, microRNAs (miRNAs) have become one of the hottest subjects in the area of cancer genomics. MicroRNAs are single-stranded RNAs of 19 to 24 nucleotides in length generated through a complex maturation process. Recent studies have demonstrated that microRNAs can have an oncogene or tumor suppressor role by regulating the expression of target genes. Therefore, microRNAs are highly related to cancer processes, including initiation, growth, apoptosis, invasion, and metastasis. In this panorama, several high-through put technologies studies have revealed miRNA roles in classifying tumors and predicting patient outcome with high accuracy. We provide a review highlighting recent progress on the understanding of the cellular function of human microRNAs and their expression in solid tumors.


Cancer Letters | 2013

Next generation analysis of breast cancer genomes for precision medicine.

Maurizio Previati; Marco Manfrini; Marco Galasso; Carlotta Zerbinati; Jeff Palatini; Pierluigi Gasparini; Stefano Volinia

For many years breast cancer classification has been based on histology and immune-histochemistry. New techniques, more strictly related to cancer biology, partially succeeded in fractionating patients, correlated to survival and better predicted the patient response to therapy. Nowadays, great expectations arise from massive parallel or high throughput next generation sequencing. Cancer genomics has already revolutionized our knowledge of breast cancer molecular pathology, paving the way to the development of new and more effective clinical protocols. This review is focused on the most recent advances in the field of cancer genomics and epigenomics, including DNA alterations and driver gene mutations, gene fusions, DNA methylation and miRNA expression.


Genome Medicine | 2014

A large scale expression study associates uc.283-plus lncRNA with pluripotent stem cells and human glioma

Marco Galasso; Paola Dama; Maurizio Previati; Sukhinder K. Sandhu; Jeff Palatini; Vincenzo Coppola; Sarah Warner; Maria Elena Sana; Riccardo Zanella; Ramzey Abujarour; Caroline Desponts; Michael A. Teitell; Ramiro Garzon; George A. Calin; Carlo M. Croce; Stefano Volinia

BackgroundThere are 481 ultra-conserved regions (UCRs) longer than 200 bases in the genomes of human, mouse and rat. These DNA sequences are absolutely conserved and show 100% identity with no insertions or deletions. About half of these UCRs are reported as transcribed and many correspond to long non-coding RNAs (lncRNAs).MethodsWe used custom microarrays with 962 probes representing sense and antisense sequences for the 481 UCRs to examine their expression across 374 normal samples from 46 different tissues and 510 samples representing 10 different types of cancer. The expression in embryonic stem cells of selected UCRs was validated by real time PCR.ResultsWe identified tissue selective UCRs and studied UCRs in embryonic and induced pluripotent stem cells. Among the normal tissues, the uc.283 lncRNA was highly specific for pluripotent stem cells. Intriguingly, the uc.283-plus lncRNA was highly expressed in some solid cancers, particularly in one of the most untreatable types, glioma.ConclusionOur results suggest that uc.283-plus lncRNA might have a role in pluripotency of stem cells and in the biology of glioma.


International Journal of Molecular Medicine | 2013

Association between idiopathic hearing loss and mitochondrial DNA mutations: a study on 169 hearing-impaired subjects.

Valeria Guaran; Laura Astolfi; Alessandro Castiglione; Edi Simoni; Elena Olivetto; Marco Galasso; Patrizia Trevisi; Micol Busi; Stefano Volinia; Alessandro Martini

Mutations in mitochondrial DNA (mtDNA) have been shown to be an important cause of sensorineural hearing loss (SNHL). In this study, we performed a clinical and genetic analysis of 169 hearing-impaired patients and some of their relatives suffering from idiopathic SNHL, both familial and sporadic. The analysis of four fragments of their mtDNA identified several polymorphisms, the well known pathogenic mutation, A1555G, and some novel mutations in different genes, implying changes in the aminoacidic sequence. A novel sporadic mutation in 12S rRNA (MT-RNR1), not previously reported in the literature, was found in a case of possible aminoglycoside-induced progressive deafness.

Collaboration


Dive into the Marco Galasso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Vecchione

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge