Marco Giovine
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Giovine.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Elena Zocchi; Armando Carpaneto; Carlo Cerrano; Giorgio Bavestrello; Marco Giovine; Santina Bruzzone; Lucrezia Guida; Luisa Franco; Cesare Usai
Sponges (phylum Porifera) are the phylogenetically oldest metazoan animals, their evolution dating back to 600 million years ago. Here we demonstrate that sponges express ADP-ribosyl cyclase activity, which converts NAD+ into cyclic ADP-ribose, a potent and universal intracellular Ca2+ mobilizer. In Axinella polypoides (Demospongiae, Axinellidae), ADP-ribosyl cyclase was activated by temperature increases by means of an abscisic acid-induced, protein kinase A-dependent mechanism. The thermosensor triggering this signaling cascade was a heat-activated cation channel. Elucidation of the complete thermosensing pathway in sponges highlights a number of features conserved in higher organisms: (i) the cation channel thermoreceptor, sensitive to heat, mechanical stress, phosphorylation, and anesthetics, shares all of the functional characteristics of the mammalian heat-activated background K+ channel responsible for central and peripheral thermosensing; (ii) involvement of the phytohormone abscisic acid and cyclic ADP-ribose as its second messenger is reminiscent of the drought stress signaling pathway in plants. These results suggest an ancient evolutionary origin of this stress-signaling cascade in a common precursor of modern Metazoa and Metaphyta.
Biotechnology and Applied Biochemistry | 2001
Silvana Penco; Sonia Scarfì; Marco Giovine; Gianluca Damonte; Enrico Millo; Barbara Villaggio; Mario Passalacqua; Marina Pozzolini; Cecilia Garrè; Umberto Benatti
Many different unique functions have been attributed to lactoferrin (Lf), including DNA and RNA binding, and transport into the nucleus, where Lf binds to specific sequences and activates transcription. A pentapeptide, Gly‐Arg‐Arg‐Arg‐Arg, corresponding to a region of the N‐terminal portion of human Lf rich in basic amino acids, was synthesized and its intracellular localization was investigated. Peptide internalization was assayed using the rhodaminated form of the same molecule. This N‐terminal peptide sequence is able to be internalized within less than 10 min at concentration as low as 1 μM, and its intracellular localization is nuclear, mainly nucleolar. Similar behaviour was observed using peptides composed of either all l or d amino acids, the last one being a retro‐inverse peptide. The internalization process does not involve an endocytotic pathway, since no inhibition of the uptake was observed at 4 °C. The kinetics of peptide internalization was also evaluated. The internalization properties of such a short Lf pentapeptide have been assayed for its ability to transport peptide nucleic acids (PNAs) inside cells in order to improve their efficacy. The abundant transmembrane transport and nuclear localization of the proposed peptide, deriving from hLf and, for the first time, identified as a nuclear localization signal, could be used as an alternative strategy to tackle the unsolved problem of intracellular accumulation of antisense and antigene drugs and for the development of new pharmacological tools.
Biophysical Journal | 2004
Gianluca Croce; Alberto Frache; Marco Milanesio; Leonardo Marchese; Mauro Causà; Davide Viterbo; Alessia Barbaglia; Vera Bolis; Giorgio Bavestrello; Carlo Cerrano; Umberto Benatti; Marina Pozzolini; Marco Giovine; Heinz Amenitsch
Siliceous sponges, one of the few animal groups involved in a biosilicification process, deposit hydrated silica in discrete skeletal elements called spicules. A multidisciplinary analysis of the structural features of the protein axial filaments inside the spicules of a number of marine sponges, belonging to two different classes (Demospongiae and Hexactinellida), is presented, together with a preliminary analysis of the biosilicification process. The study was carried out by a unique combination of techniques: fiber diffraction using synchrotron radiation, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular modeling. From a phylogenetic point of view, the main result is the structural difference between the dimension and packing of the protein units in the spicule filaments of the Demospongiae and the Hexactinellida species. Models of the protein organization in the spicule axial filaments, consistent with the various experimental evidences, are given. The three different species of demosponges analyzed have similar general structural features, but they differ in the degree of order. The structural information on the spicule axial filaments can help shed some light on the still unknown molecular mechanisms controlling biosilicification.
The Biological Bulletin | 1998
Giorgio Bavestrello; U. Benatti; Barbara Calcinai; Riccardo Cattaneo-Vietti; Carlo Cerrano; A. Favre; Marco Giovine; S. Lanza; R. Pronzato; Michele Sarà
The skeleton of the common Mediterranean demosponge Chondrosia reniformis lacks endogenous spicules; but exogenous siliceous material is selectively incorporated into its collagenous ectosome, strengthening this layer. Nevertheless, the settling of sponge buds during asexual reproduction necessitates an active incorporation of the calcareous substratum through the sponge lower ectosome. This fact suggests the presence of a polarity in the sponge, with the lower surface selecting primarily carbonates, and the upper surface selecting exclusively silicates and quartz. Our observations under experimental conditions showed that the strong selectivity of the upper ectosome is realized only when the sponge is fixed to the substratum; if detached, the sponge incorporates both quartz and carbonates. In laboratory experiments, the incapacity of both kinds of ectosome to regenerate into a new complete sponge suggests that this polarity arises early in ontogeny.
Journal of Cell Science | 2003
Elena Zocchi; Giovanna Basile; Carlo Cerrano; Giorgio Bavestrello; Marco Giovine; Santina Bruzzone; Lucrezia Guida; Armando Carpaneto; Raffaella Magrassi; Cesare Usai
Recently, the thermosensing pathway in sponges (Porifera) was elucidated. The thermosensor triggering this cascade is a heat-activated cation channel, with the phytohormone abscisic acid (ABA), cyclic ADP-ribose (cADPR) and calcium acting as intracellular messengers, similarly to the drought-stress signaling cascade in higher plants. Here, we investigated the functional effects downstream of the temperature-signaling pathway in Axinella polypoides (Porifera, Demonspongiae). Short-term stimulation followed by long-term depression of amino acid incorporation, oxygen consumption and water filtration were observed after exposure of the sponge to a brief heat stress or to micromolar ABA. These effects could be prevented by the targeted interruption of the signaling pathway either at the level of the cation channel thermosensor or at the level of the cADPR-induced intracellular calcium increase. Moreover, release of cyclase activity into the sea water and generation of extracellular cADPR were observed following brief heat stress. Intact sponge cells were sensitive to extracellular cADPR and addition of purified cyclase increased sponge respiration similarly to heat stress. This is the first observation of functional effects exerted on Metazoa by the phytohormone ABA: conservation of the ABA/cADPR stress-signaling cascade points to its early evolution in a common precursor of modern Metazoa and Metaphyta. The functional effects induced by extracellular cyclase/cADPR suggest an evolutionary origin of cADPR as an ancient stress hormone in Porifera.
Marine Biotechnology | 2004
Marina Pozzolini; Laura Sturla; Carlo Cerrano; Giorgio Bavestrello; Laura Camardella; Anna Maria Parodi; Federica Raheli; Umberto Benatti; Werner E. G. Müller; Marco Giovine
In some sponges peculiar proteins called silicateins catalyze silica polymerization in ordered structures, and their study is of high interest for possible biotechnological applications in the nanostructure industry. In this work we describe the isolation and the molecular characterization of silicatein from spicules of Petrosia ficiformis, a common Mediterranean sponge, and the development of a cellular model (primmorphs) suitable for in vitro studies of silicatein gene regulation. The spicule of P. ficiformis contains an axial filament composed of 2 insoluble proteins, of 30 and 23 kDa. The 23-kDa protein was characterized, and the full-length cDNA was cloned. The putative amino acid sequence has high homology with previously described silicateins from other sponge species and also is very similar to cathepsins, a cystein protease family. Finally, P. ficiformis primmorphs express the silicatein gene, suggesting that they should be a good model for biosilicification studies.
FEBS Letters | 1999
Sonia Scarfì; Marco Giovine; Anna Gasparini; Gianluca Damonte; Enrico Millo; Marina Pozzolini; Umberto Benatti
Overexpression of inducible nitric oxide synthase causes the production of high levels of nitric oxide, which, under pathological conditions, leads to immunosuppression and tissue damage. The results recently obtained using peptide nucleic acids, rather than traditional oligonucleotides as antigen and antisense molecules, prompted us to test their efficacy in the regulation of nitric oxide production, thereby overcoming the obstacle of cellular internalization. The cellular permeability of four inducible nitric oxide synthase antisense peptide nucleic acids of different lengths was evaluated. These peptide nucleic acids were covalently linked to a hydrophobic peptide moiety to increase internalization and to a tyrosine to allow selective 125I radiolabelling. Internalization experiments showed a 3–25‐fold increase in the membrane permeability of the modified peptide nucleic acids with respect to controls. inducible nitric oxide synthase inhibition experiments on intact stimulated macrophages RAW 264.7 after passive permeation of the two antisense peptide nucleic acids 3 and 4 demonstrated a significant decrease (43–44%) in protein enzymatic activity with respect to the controls. These data offer a basis for developing a good alternative to conventional drugs directed against inducible nitric oxide synthase overexpression.
Respiratory Research | 2009
Sonia Scarfì; Mirko Magnone; Chiara Ferraris; Marina Pozzolini; Federica Benvenuto; Umberto Benatti; Marco Giovine
BackgroundInhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7.MethodsTaking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways.ResultsHere we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-α production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself.ConclusionTaken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.
Naturwissenschaften | 2005
Oxana V. Kaluzhnaya; Sergey I. Belikov; Heinz C. Schröder; Matthias Wiens; Marco Giovine; Anatoli Krasko; Isabel M. Müller; Werner E. G. Müller
In a preceding study it has been reported that the freshwater sponge Lubomirskia baicalensis, living in Lake Baikal (East Siberia), is composed of spicules forming a characteristic pattern which follows radiate accretive growth. Here we report that the spicules are synthesized by the enzyme silicatein, a protein which is related to cathepsin L. The cDNAs for silicatein and the related cathepsin L were isolated and used as probes to show that the mRNA levels of silicatein in the bases of the spicule skeleton of the animals are low, while the mRNA level of cathepsin L in this region exceeds that of the growing zone. This is the first comprehensive study on the importance of the axial filament/silicatein as an essential structural and functional component determining the growth and stability of demosponge spicules.
FEBS Journal | 2007
Sonia Scarfì; Umberto Benatti; Marina Pozzolini; Emanuela Clavarino; Chiara Ferraris; Mirko Magnone; Laura Valisano; Marco Giovine
Exposure to quartz particles induces a pathological process named silicosis. Alveolar macrophages initiate the disease through their activation, which is the origin of the later dysfunctions. Ascorbic acid is known to selectively dissolve the quartz surface. During the reaction, ascorbic acid progressively disappears and hydroxyl radicals are generated from the quartz surface. These observations may be relevant to mammalian quartz toxicity, as substantial amounts of ascorbic acid are present in the lung epithelium. We studied the inflammatory response of the murine macrophage cell line RAW 264.7 incubated with ascorbic acid‐treated quartz, through the expression and activity of the enzyme cyclo‐oxygenase‐2 (COX‐2). COX‐2 expression and prostaglandin secretion were enhanced in cells incubated with ascorbic acid‐treated quartz. In contrast, no changes were observed in cells incubated with Aerosil OX50, an amorphous form of silica. Quantification of COX‐2 mRNA showed a threefold increase in cells incubated with ascorbic acid‐treated quartz compared with controls. The transcription factors, NF‐κB, pCREB and AP‐1, were all implicated in the increased inflammatory response. Reactive oxygen species (H2O2 and OH•) were involved in COX‐2 expression in this experimental model. Parallel experiments performed on rat alveolar macrophages from bronchoalveolar lavage confirmed the enhanced COX‐2 expression and activity in the cells incubated with ascorbic acid‐treated quartz compared with untreated quartz. In conclusion, the selective interaction with, and modification of, quartz particles by ascorbic acid may be a crucial event determining the inflammatory response of macrophages, which may subsequently develop into acute inflammation, eventually leading to the chronic pulmonary disease silicosis.