Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Guida is active.

Publication


Featured researches published by Marco Guida.


Water Research | 2009

Degradation of diclofenac by TiO2 photocatalysis : UV absorbance kinetics and process evaluation through a set of toxicity bioassays

Luigi Rizzo; S. Meriç; Despo Kassinos; Marco Guida; Francesca Russo; Vincenzo Belgiorno

In the present study the degradation kinetics and mineralization of diclofenac (DCF) by the TiO(2) photocatalysis were investigated in terms of UV absorbance and COD measurements for a wide range of initial DCF concentrations (5-80mgL(-1)) and photocatalyst loadings (0.2-1.6gTiO(2)L(-1)) in a batch reactor system. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Artemia salina) was performed to evaluate the potential detoxification of DCF. A pseudo-first-order kinetic model was found to fit well most of the experimental data, while at high initial DCF concentrations (40 and 80mgL(-1)) and at 1.6gTiO(2)L(-1) photocatalyst loading a second-order kinetic model was found to fit the data better. The toxicity of the treated DCF samples on D. magna and P. subcapitata varied during the oxidation, probably due to the formation of some intermediate products more toxic than DCF. Unicellular freshwater algae was found to be very sensitive to the treated samples as well as the results from D. magna test were consistent to those of algae tests. A. salina was not found to be sensitive under the investigated conditions. Finally, UV absorbance analysis were found to be an useful tool for a fast and easy to perform measurement to get preliminary information on the organic intermediates that are formed during oxidation and also on their disappearance rate.


Water Research | 2009

Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals

Luigi Rizzo; S. Meriç; Marco Guida; Despo Kassinos; Vincenzo Belgiorno

Degradation kinetics and mineralization of an urban wastewater treatment plant effluent contaminated with a mixture of pharmaceutical compounds composed of amoxicillin (10 mg L(-1)), carbamazepine (5 mg L(-1)) and diclofenac (2.5 mg L(-1)) by TiO(2) photocatalysis were investigated. The photocatalytic effect was investigated using both spiked distilled water and actual wastewater solutions. The process efficiency was evaluated through UV absorbance and TOC measurements. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum) was performed to evaluate the potential toxicity of the oxidation intermediates. A pseudo-first order kinetic model was found to fit well the experimental data. The mineralization rate (TOC) of the wastewater contaminated with the pharmaceuticals was found to be really slow (t(1/2)=86.6 min) compared to that of the same pharmaceuticals spiked in distilled water (t(1/2)=46.5 min). The results from the toxicity tests of single pharmaceuticals, their mixture and the wastewater matrix spiked with the pharmaceuticals displayed a general accordance between the responses of the freshwater aquatic species (P. subscapitata>D. magna). In general the photocatalytic treatment did not completely reduce the toxicity under the investigated conditions (maximum catalyst loading and irradiation time 0.8 g TiO(2) L(-1) and 120 min respectively).


Molecules | 2017

Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review

Giovanni Libralato; Emilia Galdiero; Annarita Falanga; Rosa Carotenuto; Elisabetta de Alteriis; Marco Guida

Nano-based products are widespread in several sectors, including textiles, medical-products, cosmetics, paints and plastics. Nanosafety and safe-by-design are driving nanoparticle (NP) production and applications through NP functionalization (@NPs). Indeed, @NPs frequently present biological effects that differ from the parent material. This paper reviews the impact of quantum dots (QDs), gold nanoparticles (AuNPs), and polystyrene-cored NPs (PSNPs), evidencing the role of NP functionalization in toxicity definition. Key biological models were taken into consideration for NP evaluation: Saccharomyces cerevisiae, fresh- (F) and saltwater (S) microalgae (Raphidocelis subcapitata (F), Scenedesmus obliquus (F) and Chlorella spp. (F), and Phaeodactylum tricornutum (S)), Daphnia magna, and Xenopus laevis. QDs are quite widespread in technological devices, and they are known to induce genotoxicity and oxidative stress that can drastically change according to the coating employed. For example, AuNPs are frequently functionalized with antimicrobial peptides, which is shown to both increase their activity and decrease the relative environmental toxicity. P-NPs are frequently coated with NH2− for cationic and COOH− for anionic surfaces, but when positively charged toxicity effects can be observed. Careful assessment of functionalized and non-functionalized NPs is compulsory to also understand their potential direct and indirect effects when the coating is removed or degraded.


Ecotoxicology and Environmental Safety | 2015

Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects.

Giovanni Pagano; Marco Guida; Franca Tommasi; Rahime Oral

In the recent decades, rare earth elements (REE) have undergone a steady spread in several industrial and medical applications, and in agriculture. Relatively scarce information has been acquired to date on REE-associated biological effects, from studies of bioaccumulation and of bioassays on animal, plant and models; a few case reports have focused on human health effects following occupational REE exposures, in the present lack of epidemiological studies of occupationally exposed groups. The literature is mostly confined to reports on few REE, namely cerium and lanthanum, whereas substantial information gaps persist on the health effects of other REE. An established action mechanism in REE-associated health effects relates to modulating oxidative stress, analogous to the recognized redox mechanisms observed for other transition elements. Adverse outcomes of REE exposures include a number of endpoints, such as growth inhibition, cytogenetic effects, and organ-specific toxicity. An apparent controversy regarding REE-associated health effects relates to opposed data pointing to either favorable or adverse effects of REE exposures. Several studies have demonstrated that REE, like a number of other xenobiotics, follow hormetic concentration-related trends, implying stimulatory or protective effects at low levels, then adverse effects at higher concentrations. Another major role for REE-associated effects should be focused on pH-dependent REE speciation and hence toxicity. Few reports have demonstrated that environmental acidification enhances REE toxicity; these data may assume particular relevance in REE-polluted acidic soils and in REE mining areas characterized by concomitant REE and acid pollution. The likely environmental threats arising from REE exposures deserve a new line of research efforts.


Environmental Research | 2015

Rare earth elements in human and animal health: State of art and research priorities.

Giovanni Pagano; Francesco Aliberti; Marco Guida; Rahime Oral; Antonietta Siciliano; Marco Trifuoggi; Franca Tommasi

BACKGROUND A number of applications have been developed using rare earth elements (REE), implying several human exposures and raising unsolved questions as to REE-associated health effects. METHODS A MedLine survey was retrieved from early reports (1980s) up to June 2015, focused on human and animal exposures to REE. Literature from animal models was selected focusing on REE-associated health effects. RESULTS Some REE occupational exposures, in jobs such as glass polishers, photoengravers and movie projectionists showed a few case reports on health effects affecting the respiratory system. No case-control or cohort studies of occupational REE exposures were retrieved. Environmental exposures have been biomonitored in populations residing in REE mining areas, showing REE accumulation. The case for a iatrogenic REE exposure was raised by the use of gadolinium-based contrast agents for nuclear magnetic resonance. Animal toxicity studies have shown REE toxicity, affecting a number of endpoints in liver, lungs and blood. On the other hand, the use of REE as feed additives in livestock is referred as a safe and promising device in zootechnical activities, possibly suggesting a hormetic effect both known for REE and for other xenobiotics. Thus, investigations on long-term exposures and observations are warranted. CONCLUSION The state of art provides a limited definition of the health effects in occupationally or environmentally REE-exposed human populations. Research priorities should be addressed to case-control or cohort studies of REE-exposed humans and to life-long animal experiments.


Gene | 2012

A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis.

Bruna De Felice; Marco Guida; Maurizio Guida; Cinzia Coppola; Giovanna De Mieri; Roberto Cotrufo

Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Accumulating evidence indicates that various miRNAs, expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, misregulation of microRNAs contributes to some mental disorders and neurodegeneration diseases. Here, we analyzed the expression profiles of 911 human miRNAs using microarray technology in leukocytes, the most readily available human tissue cells, obtained from 8 patients affected by sporadic amyotrophic lateral sclerosis (sALS) and 12 healthy controls. An independent group of 14 sALS patients and 14 controls was used for validation by TaqMan real-time polymerase chain reaction assay. We identified 8 miRNAs that were significantly up- or downregulated in sALS patients as compared to healthy controls. The significant variations in miRNAs profiles detected in leukocytes have been related to miRNAs predominantly expressed in the nervous system. One of these miRNAs, miR-338-3p, has previously been shown to be de-regulated in ALS brains. This study, for the first time, detected specific microRNAs disease-related changes at an earlier stage of sALS. We suggest that miRNAs profiles found in the peripheral blood leukocytes from sALS patients can be relevant to understand the pathogenesis of sALS and/or used as biomarkers of the disease.


Chemosphere | 2010

Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos

Rahime Oral; Paco Bustamante; Michel Warnau; Antonello D'ambra; Marco Guida; Giovanni Pagano

The aim of this study was to evaluate the toxicity of two rare earth elements (REE), cerium and lanthanum on sea urchin embryos and sperm. Sea urchin (Paracentrotus lividus) embryos were reared for 72 h in Ce(IV)- or La(III)-contaminated seawater at concentrations ranging from 10(-8) to 10(-5) M. Cleaving embryos (5h post-fertilization) were submitted to cytogenetic analysis, scoring mitotic activity and a set of mitotic aberrations. Embryological analysis was carried out to determine percent developmental anomalies and/or embryonic mortality. P. lividus sperm were suspended in Ce(IV) or La(III) (10(-8)-10(-5)M) for 1h, and percent fertilized eggs were scored in cleaving embryos that were cultured up to pluteus stage to score any developmental defects. Embryos reared in 10(-5)M Ce(IV) resulted in 100% embryonic mortality, whereas 10(-5)M La(III) induced 100% developmental defects, without causing any embryonic mortality. A significant concentration-related mitotoxic effect and induction of mitotic aberrations were observed in Ce(IV)-exposed, but not in La(III)-exposed embryos, at concentrations ranging from 10(-7)M to 3 x 10(-6)M. Following sperm exposure, both Ce(IV) and La(III) induced a decrease in sperm fertilization success at the highest tested concentration (10(-5)M). The offspring of Ce(IV)-exposed, but not of La(III)-exposed sperm displayed a significant concentration-related increase in developmental defects. The results may suggest adverse impacts in REE-exposed biota and warrant further studies of a more extended REE series.


Archives of Environmental Contamination and Toxicology | 1993

Effects on sea urchin fertilization and embryogenesis of water and sediment from two rivers in Campania, Italy

Giovanni Pagano; Bruno Anselmi; Paul A. Dinnel; Agostino Esposito; Marco Guida; M. Iaccarino; Giovanni Melluso; Marinella Pascale; Norman M. Trieff

Sea urchin embryos and sperm were utilized for evaluating the toxicity of water and sediment from two rivers, the Sarno (S) River and the Volturno (V) River, in the Campania region, Italy. The effects on developing embryos were evaluated by scoring developmental defects, whereas sperm exposure was tested for the effects on fertilization and offspring quality. Ten sampling sites from the rivers (S.1–S.4 and V.1–V.6) were monitored for water and sediment quality. Water sampling was carried out biweekly for a year (1988–1989); the samples were tested at dilutions 10−4 to 10−2 in natural seawater. Sediment tests were carried out on solid phase samples (collected in 1989 to 1992), at concentrations ranging from 2 to 10 mg/ml (dry wt) in seawater. The tests conducted on water samples mostly led to nonsignificant results in either embryo-or spermiotoxicity, possibly due to sharp changes in pollutant levels in the water column. Unlike water, sediment samples displayed clear-cut results both on embryogenesis and on fertilization success. The grain size of sediment failed to reveal any relationship with toxicity, which could only be referred to the presence of toxic contaminants (Melluso et al., 1993). The most polluted sediment samples displayed a dramatic embryo-toxicity, up to approximately 87% developmental arrest in embryos reared in 2 mg/ml of sediment from site S.1 (affected by leather tanning effluent). These results were independent of storage conditions of sediment samples (i.e., at +4°C or −20°C). A decrease in fertilization success was also induced by sediment samples from polluted sites (not by a relatively unpolluted reference sample). Interestingly, sediment spermiotoxicity appeared to be related to storage temperature in samples from two agricultural sites (S.3 and V.6), in that freezing caused a drop in sample spermiotoxicity compared to refrigeration; e.g., a sample from site V.6 stored at +4°C decreased fertilization rate (FR) to 9% versus a control value of 86%, whereas the same sample induced but a minor change following storage at −20°C (FR=68%).In general, a better reliability was observed for sediment bioassays than for water bioassays, thus suggesting that future biomonitoring studies should mainly focus on sediment quality. The use of solid phase sediment in toxicity testing by sea urchin embryos and sperm is warranted by the present results.


Ecotoxicology and Environmental Safety | 2016

Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects

Giusy Lofrano; Giovanni Libralato; Roberta Adinolfi; Antonietta Siciliano; Patrizia Iannece; Marco Guida; Maurizio Giugni; Annamaria Volpi Ghirardini; Maurizio Carotenuto

Chloramphenicol sodium succinate (CAP, C15H15Cl2N2 Na2O8) is a broad-spectrum antibiotic exhibiting activity against both Gram-positive and Gram-negative bacteria as well as other groups of microorganisms only partially removed by conventional activated sludge wastewater treatment plants. Thus, CAP and its metabolites can be found in effluents. The present work deals with the photocatalytic degradation of CAP using TiO2 as photocatalyst. We investigated the optimization of reaction contact time and concentration of TiO2 considering CAP and its by-products removal as well as effluent ecotoxicity elimination. Considering a CAP real concentration of 25mgL(-1), kinetic degradation curves were determined at 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2gL(-1) TiO2 after 5, 10, 30, 60 and 120min reaction time. Treated samples were checked for the presence of by-products and residual toxicity (V. fischeri, P. subcapitata, L. sativum and D. magna). Results evidenced that the best combination for CAP and its by-products removal could be set at 1.6gL(-1) of TiO2 for 120min with an average residual toxicity of approximately 10%, that is the threshold set for negative controls in most toxicity tests for blank and general toxicity test acceptability.


Chemosphere | 2015

S2O82−/UV-C and H2O2/UV-C treatment of Bisphenol A: Assessment of toxicity, estrogenic activity, degradation products and results in real water

Tugba Olmez-Hanci; Duygu Dursun; Egemen Aydin; Idil Arslan-Alaton; Binhan Girit; Luigi Mita; Nadia Diano; Damiano Gustavo Mita; Marco Guida

The performance of S2O8(2-)/UV-C and H2O2/UV-C treatments was investigated for the degradation and detoxification of Bisphenol A (BPA). The acute toxicity of BPA and its degradation products was examined with the Vibrio fischeri bioassay, whereas changes in estrogenic activity were followed with the Yeast Estrogen Screen (YES) assay. LC and LC-MS/MS analyses were conducted to determine degradation products evolving during photochemical treatment. In addition, BPA-spiked real freshwater samples were also subjected to S2O8(2-)/UV-C and H2O2/UV-C treatment to study the effect of a real water matrix on BPA removal and detoxification rates. BPA removal in pure water was very fast (⩽7 min) and complete via both H2O2/UV-C and S2O8(2-)/UV-C treatment, accompanied with rapid and significant mineralization rates ranging between 70% and 85%. V.fischeri bioassay results indicated that degradation products being more toxic than BPA were formed at the initial stages of H2O2/UV-C whereas a rapid and steady reduction in toxicity was observed during S2O8(2-)/UV-C treatment in pure water. UV-C treatment products exhibited a higher estrogenic activity than the original BPA solution while the estrogenicity of BPA was completely removed during H2O2/UV-C and S2O8(2-)/UV-C treatments parallel to its degradation. 3-methylbenzoic and 4-sulfobenzoic acids, as well as the ring opening products fumaric, succinic and oxalic acids could be identified as degradation products. BPA degradation required extended treatment periods (>20 min) and TOC removals were considerably retarded (by 40%) in the raw freshwater matrix most probably due to its natural organic matter content (TOC=5.1 mg L(-1)). H2O2/UV-C and S2O8(2-)/UV-C treatment in raw freshwater did not result in toxic degradation products.

Collaboration


Dive into the Marco Guida's collaboration.

Top Co-Authors

Avatar

Antonietta Siciliano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giovanni Pagano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marco Trifuoggi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgio Liguori

Parthenope University of Naples

View shared research outputs
Top Co-Authors

Avatar

Giovanni Libralato

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruna De Felice

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Emilia Galdiero

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge